VOLUME 89, NUMBER 5

PHYSICAL REVIEW LETTERS

29 JuLy 2002

Generic Morphologies of Viscoelastic Dewetting Fronts

Stephan Herminghaus, Ralf Seemann, and Karin Jacobs

Applied Physics Department, University of Ulm, D-89069 Ulm, Germany
(Received 14 January 2002; published 16 July 2002)

A simple model is put forward which accounts for the occurrence of certain generic dewetting
morphologies in thin liquid coatings. It demonstrates that, by taking into account the elastic properties
of the coating, a morphological phase diagram may be derived which describes the observed structures of
dewetting fronts. It is demonstrated that dewetting morphologies may also serve to determine nanoscale

rheological properties of liquids.

DOI: 10.1103/PhysRevLett.89.056101

When a thin liquid film beads off a solid substrate, it
is eventually transformed into an ensemble of indi-
vidual liquid droplets, the arrangement of which may
vary strongly according to the basic mechanisms involved
in the dewetting process [1-7]. In, by far, most cases,
dewetting is initiated by heterogeneous nucleation of in-
dividual holes in the initial film, thus forming contact lines
between the film surface and the substrate. The surface
forces acting upon these contact lines give rise to moving
dewetting fronts, the motion, shape, and interplay of which
largely determine the final dewetting morphology.

It would be very desirable to have a theory describing
the dynamics of these fronts precisely enough for extract-
ing information on the dewetting mechanisms from the
characteristics of their shape and the final droplet structure.
However, the task of setting up such a theory has proven
intractable thus far. Solving the Navier-Stokes equation
with the moving contact line as a boundary condition is
particularly complicated and entails ad hoc assumptions on
the dynamics at the contact line [8—10]. Furthermore, it has
meanwhile become clear that viscoelastic effects, which
are not described by the Navier-Stokes equation, may be
decisive for the evolving morphology in both advancing
and receding fronts [4,11-14]. In particular, it has recently
been shown [13,14] that “‘elastic’” dewetting fronts may
strongly differ, as to their shape and dynamics, from
Newtonian ones [15]; and it has been pointed out that
these findings are not accounted for by theory thus far
[13]. In contrast to very recent theoretical attempts invok-
ing rheological nonlinearities in the material properties
[16,17], it will be shown in the present paper that the
main features may be well accounted for by including
viscoelasticity in a rather simple, linear fashion.

Let us first recall the main features to be explained, by
summarizing the generic front morphologies observed thus
far. Figure 1 shows dewetting fronts in liquid polystyrene
films beading off silicon substrates (the fronts move from
left to right). The profiles are obtained by scanning force
microscopy from the rims of circular dry patches nucleated
in the films [18-20]. They represent radial sections through
the rims, and the radii of the holes were invariably large as
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compared to the width of the rims, such that the in-plane
curvature of the latter can be neglected. Most commonly,
one observes profiles as those shown in Fig. 1(a), with a
simple decay from the crest into the undisturbed film to the
right. However, when the molecular weight of the polymer
is small enough [14], the shape may be qualitatively differ-
ent. This is shown in Fig. 1(b), which has been obtained
with polystyrene films with a molecular weight of only
2 kg/mol. A ditch is clearly visible in front of the crest, and
even another small elevation to the right of the ditch is
present as well, such that the front appears as a damped
oscillation. The only difference between the film materials
used for Figs. 1(a) and 1(b) is their molecular weight, and
thus their viscoelastic properties. If the film is not too thick,
the ditch may reach the substrate and pinch off the crest
from the film, forming a new contact line. This happens
repeatedly, such that a series of isolated crests forms in a
cascade of pinch-off events, as shown in Fig. 1(c).

We shall now create a suitable mathematical description
of these findings. An incompressible viscoelastic fluid may
be described by the force balance [21-23],

nAj=Vp—EA¢, (D

where 7 is the viscosity, j is the material current field in the
film, p is the pressure, E is Young’s modulus, and ¢ is a
local displacement field describing the strain [23,24]. In
the present treatment, we will adopt the lubrication ap-
proximation [25], thereby neglecting the normal (z) com-
ponents of the current and the pressure gradient, and
consider quantities averaged over the film thickness, .
The strain in the film is thereby assumed to have a uniaxial
symmetry, such that ¢» may be viewed as a scalar. We then
can rewrite Eq. (1) as J(x) = —Ca,(p — aEd, ), where J
is the total current in the film, and « is a numerical factor of
order unity which characterizes the flow profile. The latter
depends, e.g., on the friction of the film at the substrate,
and it is clear that, in the case of full slippage (in which
case a = 1), the coupling of the flow to the strain will not
be the same as in the absence of slip. Although the deter-
mination of « is in principle straightforward, it is rather
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FIG. 1. Dewetting morphologies observed in various liquid

polystyrene films beading off a silicon substrate. The height
has been normalized with respect to the film thickness.
(a) Profiles of the rims of holes nucleated in 40 nm thick
films. The steep profile was obtained with a molecular weight
of My=101 kg/mol, the flatter profile with My, =600 kg/mol.
Each profile is superimposed with a double exponential fit as a
dotted line; the agreement is almost perfect (see text). (b) Profile
obtained with My,=2 kg/mol (h = 4.9 nm). (c) Same as (b), but
with smaller film thickness (2 = 3.9 nm).

tedious and of minor interest for the present study.

Similarly, C depends upon the viscosity of the film, 7,
and its friction coefficient at the substrate surface, . If the

latter is infinite (Poiseuille flow with no slip at the sub-
strate), we have C = h3 /37, while for k — 0 (plug flow),
C = h?/k [15,25].
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Since the derivative of the displacement is the strain,
o(x, 1) = 9,¢, and excess pressure in the film comes about
from the curvature of its surface, we have

J(x, 1) = Co{yo, l(x, 1) + aEo(x, 1)}, 2)

where vy is the surface tension, and £(x, t) is the vertical
displacement of the film surface. We explicitly neglect
long-range wetting forces acting through the film, such as
van der Waals forces. In sufficiently thick films, which
dewet by nucleation [19,26] (such as assumed above),
these do not play a significant role.

The strain in the film may decay by internal relaxations
of the material according to 9,0 = —wy0, where ) is the
intrinsic strain relaxation rate of the material. The coupling
of the strain to the material current can thus be written
as [23,24]

(at + CL)O)O' = axJ/h’ (3)

where we have neglected the nonlinear convective term
Jd,¢. This restricts our discussion to small excursions ¢,
but enables a linear treatment. By combination of the
above equations with the continuity equation, 4,{ + d,J =
0, it is easy to obtain the equation of motion for o and {. A
precondition for elasticity to play a significant role is that
wo <K w, in which case the dispersion relation reads

0 — wp + Cq2<a7E + 7q2>, @)

where ¢ is the wave number of the perturbation.

In order to determine the shape of the moving dewetting
front, we now look for traveling-wave solutions of the form
L(x, 1) = {(x — vi), where v is the velocity of the dewet-
ting front. We remain in Fourier space; i.e., we decompose
the front profile into modes ¢, « exp(igx — wt). Writing
Q := igh, it follows that @ = Quv/h, and from Eq. (4) we
then get

3
Q' - -0+ T =0. )

As it will become clear below, the term wyh*/yC is rather
small. If we neglect it for the moment, we get the cubic
equation,

Q*—EQ—-9=0, (6)

where we have introduced the dimensionless quantities ¥ :
— vk

v and E :=“Eh . This can be easily solved, and the
Y. Y . . -
solutions of the quartic Eq. (5) turn out to deviate signifi-
cantly from those of the cubic Eq. (6) only for parameters
which are not relevant in most experimental situations. We
will thus primarily discuss Eq. (6), and refer to Eq. (5) only
occasionally, where appropriate.

If viscoelastic effects are absent, i.e., E = 0, we have
Q = Jv. We are interested only in modes with R(Q) <0
[27], which are Q = — %\3/5(1 + iy/3). The shape of the
real surface of the leading front thus exhibits not only a
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ditch, but a damped oscillation [14,28]. For Newtonian
liquids, it can be seen from numerical solutions of the
moving front problem that this result does not depend
upon the friction of the film at the substrate (slippage)
[11,12]. This fact is well accounted for by our model,
since for E = 0 the ratio J(Q)/M(Q) depends neither on
a nor on C, which are both affected by slippage.

A profile exhibiting a damped oscillation is shown in
Fig. 1(b), and it is obtained only for small molecular
weight indeed, where elastic effects are particularly
small. The real and imaginary part of Q can be determined
from the profile, and, in the case of the one displayed in
Fig. 1(b), it turns out that the oscillation decays faster than
expected for a Newtonian fluid [14]. Since the complex
roots of Eq. (6) satisfy the simple relation,

3N(0)? - J(0)? =E, (7

the elasticity of the film can be inferred from the measure-
ments, and we get «E = yE/h = 8.7 kPa. We point out
that this is a noninvasive method of determining rheologi-
cal properties of complex fluids on a submicron scale.

As the height of the crest, H, increases while more
material is accumulated, the amplitude of the oscillation
increases, and so does the depth of the ditch [14]. When the
latter reaches the substrate, the crest is pinched off and a
cascade is formed as shown in Fig. 1(c). However, this
works only as long as the width, W, of the crest is less than
half the wavelength of the damped oscillation. As H in-
creases, so does W [19,25], with the ratio H/W =: G(0)
being only a function of the dynamic contact angle at the
substrate, ® [19]. For a cylindrical rim [25], we have
simply G(®) = (1 — cos®)/2sin®. For more asymmetric
shapes, the form of G is different, but similar as to the
overall behavior and the order of magnitude. If W is larger
than W, = A/2 = 7/3(Q), the depth of the ditch is rather
determined by the contact angle of the rim at the leading
edge. Consequently, it will reach a final maximum depth
[14], and a dry spot forms only if this depth exceeds the
film thickness. The condition for the front to cascade is
readily seen to be

Ao
[S@1)

If the film thickness decreases, so does the right-hand side
of Eq. (8) (h cancels out in the exponential), such that a
cascade is expected at sufficiently small 4.

Equation (8) can be used to determine the boundary line
for the appearance of cascade structures in the (#, E) plane.
In Fig. 2(a), this is indicated by the lower curve for the case
G(®) = 7! For different values of G, the maximum of
the boundary line, indicated by the dot in the figure, is quite
accurately described by E = 0.06G%. It is clear that,
although this line gives an idea of the phase boundary, it
cannot be really accurate, since cascading necessarily leads
far out of the linear regime, to which we restrict our

7G(©) > Q) | exp( ®)
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discussion here. For very thin films, where van der Waals
forces play arole, the cascade region will slightly extend or
shrink, depending on the sign of the Hamaker constant.
These aspects will be left to a forthcoming study.

Let us now turn to the influence of stronger elastic
effects. It is interesting to investigate at which system
parameters the damped oscillation, as shown in Fig. 1(b),
vanishes. These are given by the zero of the discriminant of
the cubic Eq. (6), which is

9\2 /E\3

=) G) ®
The critical modulus above which there is no oscillation is
thus given by £ = 3(3)*/3. This may be viewed as another
morphological “phase boundary” in the (E, ©) plane, and
is shown in Fig. 2(a) as the upper solid curve. The exact
boundary, according to Eq. (5), deviates noticeably only
for very small values of E and #. To quantify this devia-
tion, it is useful to introduce the dimensionless parameter
Q := wyh/v, which represents the importance of intrinsic
relaxation in the material with respect to the shear flow
exerted by the dewetting process itself. In Fig. 2(b), the
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FIG. 2. (a) Morphological phase diagram for visco-
elastic dewetting fronts in the (E,¥) plane, according to
Eq. (6). (b) Deviation of the phase boundary according to
Eq. (5) (solid curve) from the approximation given by Eq. (6)
(dashed line).

056101-3



VOLUME 89, NUMBER 5

PHYSICAL REVIEW LETTERS

29 JuLy 2002

“exact”” phase boundary, which was determined by solving
Eq. (5) numerically, is shown as the solid curve, along with
the approximation obtained from the cubic equation
(dashed line). For () — 0, the solid curve approaches the
dashed line asymptotically. The diagram presented in
Fig. 2(a), which corresponds to ) = 0, shall thus be
considered quite reliable within the range displayed if
Q < 0.1 (in the experiments in Ref. [13], Q = 107).

The two complex conjugate roots, which give rise to the
oscillations for D > 0, merge into a degenerate real root at
a critical elastic modulus (D = 0). As the latter increases
further, they bifurcate again into two real roots, Qjq,, and
Ogort- In fact, elastic fronts can be well fitted by a super-
position of two exponentials, as shown in Fig. 1(a) by the
dotted curves. The model predicts the ratio Qghon / Olong O
increase with E, and thus the front to become more and
more asymmetric, in accordance with observation
[4,13,14]. We can again determine E from the front profile
via the relation

Qlong
Qshort

with B := %\/gﬁE_3/2, once the constant C is known for
the system.

The long-range shape of the front is determined by the
smaller root, Qjong, Which asymptotically approaches the
simple li}v_Q = —9/E. Since our model predicts Qgpoy to
scale as VE for sufficiently large E, we have Olong * Ot
if all other parameters in the system are kept constant.
In fact, for the two curves shown in Fig. 1(a), the ratio of
the Qjone is 1.40 = 0.07, while the ratio of the Q;h(zm is
1.34 = 0.13. This is clear agreement.

Finally, we note that, for large molecular weight, the
width of the front is found experimentally to remain con-
stant as it moves over the substrate [13]. This is in contrast
to what one observes with Newtonian fronts [15], but is
precisely what our model predicts: a well-defined decay
length, independent of the distance traveled.

We thus have put forward a tractable, linear model
which describes, on the basis of viscoelasticity, the generic
morphologies of liquid dewetting fronts observed thus far.
It correctly accounts for the impact of the fluid properties
upon their occurrence and structure. It is thereby capable of
extracting information on the submicron scale rheological
properties of the liquid film from the observed profiles.
This may be rendered quantitative by determining the
numerical constant «, which we leave to further work.
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sin{Z — LarccosB
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