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Microscopic Calculation of Six-Body Inelastic Reactions
with Complete Final State Interaction: Photoabsorption of 6He and 6Li
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Six-body inelastic reactions are calculated microscopically including the full six-nucleon final state
interaction. The total cross sections of �� 6He �6Li� ! X are considered as examples. The Lorentz
integral transform method and the effective interaction approach for the hyperspherical formalism are
employed. While 6Li has a single broad giant resonance peak, there are two well separated peaks for 6He
corresponding to the breakup of the neutron halo and the � core, respectively. The comparison with the
few available experimental data is discussed.
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quantity; therefore, we have chosen the total photoabsorp-
tion cross sections of the six-body nuclei as an inelastic is the response function; j�0=fi and E0=f denote wave
Inelastic responses of A-body systems are fundamental
physical quantities, since they contain valuable informa-
tion about the dynamical structure of the system. Micro-
scopic calculations of such responses are particularly
important to reveal fine details of the dynamics and of
the reaction mechanism. However, calculations of final
state wave functions (FSWF) for energies with various
open channels are already rather complicated for a three-
body system and presently out of reach for A > 3. On the
other hand, it has been shown that the extremely compli-
cated microscopic calculation of the FSWF is not neces-
sary, since the response can be calculated with the Lorentz
integral transform (LIT) method [1], where only a bound-
state-like problem has to be solved. As pointed out in [1]
the method can be applied in few- and many-body systems.
Though the FSWF is not calculated, final state interaction
(FSI) effects on the response are taken rigorously into
account. There are quite a few examples for the application
of this approach to few-body nuclei up to A � 4 (see, e.g.,
Refs. [2–5]). As to bound-state calculations there has been
tremendous progress for systems with A > 4 in the last
decade. This is due not only to an increase of the numerical
power of modern computers but also to various new micro-
scopical approaches [6–9]. Traditionally systems with a
number of particles between 4 and about 15 are considered
neither few- nor many-body systems and thus establish a
transition region where few- and many-body physics have
to merge eventually. In the present work we present a
microscopic calculation of an inelastic reaction of a six-
body system, thus taking a step towards an accurate micro-
scopic explanation for typical many-body aspects, e.g.,
collective phenomena.

We apply the LIT method and solve the above men-
tioned bound-state-like problem via an expansion in hyper-
spherical harmonics (HH) within the recently developed
effective interaction HH (EIHH) approach [9]. The re-
sponse of a system to real photons is a fundamental
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response to study. It is important to note that photoabsorp-
tion experiments with such light nuclei were performed
some 20–30 years ago and that the activity has not been
carried on further, in part because of missing theoretical
guidance. In the last few years there has been renewed
interest, however, mainly for halo nuclei (see, e.g., [10]).

Since this is the first microscopic calculation of a six-
body inclusive reaction with consideration of the complete
FSI, we take central nucleon-nucleon (NN) potential mod-
els, namely, the semirealistic potentials Malfliet-Tjon, ver-
sion I-III (MTI-III) [11], and Minnesota (MN) [12], with
parameters as given in [9]. The MTI-III model contains
Yukawa-type potentials and has a strong short range re-
pulsion, while the MN model consists of Gauss-type po-
tentials and has a rather soft core. The MTI-III potential is
fitted to the NN scattering S-wave phase shifts, 1S0 and
3S1, up to about pion threshold, whereas the MN potential
is fitted to low-energy two- and three-body data.
Calculations of the total photoabsorption cross sections
of three- and four-body nuclei have already been per-
formed with the LIT method with such semirealistic po-
tentials [3,4,13], and recently, for 3H and 3He, also with
realistic NN and three-nucleon forces [5]. The calculations
for three-body nuclei show that semirealistic potentials
lead to a rather realistic description of the total photo-
absorption cross section. Though for six-body systems
the missing P-wave interaction could play some role,
we believe that the main features of the calculated cross
sections are close to the results of a more realistic
calculation.

The total photoabsorption cross section is given by

��!� � 4
2�!R�!� ; (1)

where � is the fine structure constant and

R�!� �
Z
d�fjh�fjÔOj�0ij

2��Ef 	 E0 	!� (2)
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function and energy of ground and final state, respectively,
while ÔO is the transition operator. For the photoabsorption
cross section the Siegert theorem leads to

ÔO � D̂Dz �
XA
i�1

�3i z
0
i

2
: (3)

Here �3i and z0i represent the third component of the isospin
operator and of the coordinate of the ith particle in the
center of mass frame, respectively. It is well known that the
dipole approximation is excellent for the total photoab-
sorption cross section (see, e.g., [14]).

In the LIT method one obtains R�!� from the inversion
of the transform

L��R;�I� �
Z
d!

R�!�

�!	 �R�
2 � �2

I

� h ~��j ~��i ; (4)

where the Lorentz state ~�� is found as a unique solution of
the ‘‘Schrödinger-like’’ equation

�H 	 E0 	 �R � i�I� j ~��i � D̂Dzj�0i : (5)

Since the right-hand side of Eq. (5) is localized and since
there is an imaginary part �I, one has an asymptotic
boundary condition similar to a bound state. Therefore
one can apply bound-state techniques for its solution. We
expand �0 and ~�� in terms of the six-body symmetrized
HH [15]. The expansion is performed up to maximal values
K0
max and Kmax of the HH grand-angular quantum number

K for �0 and ~��, respectively. In the case of �0 the basis
states are constructed with the quantum numbers of the
ground state. With a central S-wave interaction for 6He
(6Li) one has angular momentum L � 0 �0�, spin S �
0 �1�, isospin T � 1 �0� with a third component Tz �
	1 �0�. For ~�� the basis functions possess the quantum
numbers selected by the dipole transition: L � 1 �1�, S �
0 �1�, T � 1 and 2 �1�, and Tz � 	1 �0�. We improve the
convergence of the HH expansion using the recently de-
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veloped EIHH approach [9] where the bare potential is
replaced by an effective potential constructed via the
Suzuki-Lee method [16]. In convergence, however, the
same results as with the bare potential are obtained (see
Ref. [9]).

In order to evaluate the LIT we calculate the quantity
h ~��j ~��i directly using the Lanczos algorithm [17] instead of
solving the Schrödinger-like equation (5). In fact, starting
from the first Lanczos vector

j’0i �
D̂Dzj�0i��������������������������������

h�0jD̂D
y
z D̂Dzj�0i

q (6)

and applying recursively the following relations,

bn�1j’n�1i � Hj’ni � anj’ni 	 bnj’n	1i ; (7)

an � h’njHj’ni; bn � jjbnj’nijj ; (8)

where an and bn are the Lanczos coefficients, one finds that
the LIT can be written as a continuous fraction

L��R;�I� �
1

�I
Im

h�0jD̂D
y
z D̂Dzj�0i

�z	 a0� 	
b21

�z	a1�	�b22=�z	a2�	b23...

: (9)

As shown in [17] a rapid convergence is reached.
For 6Li the numerator of Eq. (9) can be evaluated

directly as the ground state expectation value of long
range operators (mean square charge radius hr2chi, mean
square proton-proton distance hr2ppi�,

h�0jD̂D
y
z D̂Dzj�0i �

1

3

�
Z2hr2chi 	

Z�Z	 1�

2
hr2ppi

�
; (10)

that converges rapidly in the EIHH approach. For 6He the
situation is different, because there are two final isospin
channels (T � 1; 2). Therefore one has to sum over both
channels, replacing Eq. (9) by
L��R;�I� �
1

�I
h�0jD̂D

y
z D̂Dzj�0i � Im

X
T

�T
Kmax

�z	 a0�T� 	
b21�T�

�z	a1�T�	fb22�T�=�z	a2�T�	b23�T�...g

; (11)
where an�T� and bn�T� are the Lanczos coefficients for the
corresponding T channels, and

�T
Kmax

�

PKmax

HHT h�0jD̂D
y
z jHHTi hHHT jD̂Dzj�0iP

T

PKmax

HHT h�0jD̂D
y
z jHHTi hHHT jD̂Dzj�0i

: (12)

The sum
PKmax

HHT runs over all the HH basis functions with
isospin T and K � Kmax.

Now we turn to the discussion of the results. First, in
Table I we present various ground state properties. From
the estimated errors one sees that a rather good conver-
gence is obtained. Note that the DD values can be calcu-
lated in two ways: as a ground state expectation value and
by an integration of R�!�. Corresponding results differ
very little showing a good internal consistency of our
calculation. In Fig. 1 we show the photoabsorption cross
section ��!� of 6Li with the MTI-III and of 6He with the
MN potential for various Kmax. One observes a rather
satisfactory convergence. For both nuclei one notes that
the peak heights decrease slightly with increasing Kmax.
While the low-energy��!� is rather stable for 6Li, strength
is shifted towards lower ! for 6He. From the convergence
behavior we estimate errors of less than 10%, and we
expect that mostly peak heights and much less the general
shape of ��!� will be affected by possibly missing con-
tributions from higher K.
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TABLE I. Binding energy (EB), root mean square matter
radius (rm), and ground state expectation value in Eq. (10)
(DD) for 6He and 6Li with MN and MTI-III potentials
(Coulomb force included). The numbers in parentheses are an
estimate of the error due to the convergence behavior.

Nucleus VNN K0
max EB �MeV� rm �fm� DD �fm�

6He MN 10 	30:48�10� 2.37(4) 2.28(15)
MTI-III 10 	31:87�10� 2.23(4) 1.99(10)

6Li MN 12 	34:90�10� 2.18(2) 1.50(2)
MTI-III 12 	35:88�20� 2.13(2) 1.51(1)
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In Fig. 2 we show our final results for both NN poten-
tials. Though the MTI-III model leads to somewhat higher
cross section peaks, one obtains rather similar pictures of
��!� with both potentials. Note that there is one single
giant dipole resonance peak for 6Li and two well separated
peaks for 6He. The low-energy 6He peak of the T � 1
channel at ! � 7:5 MeV (MN) and 9:5 MeV (MTI-III)
is due to the breakup of the neutron halo. The second one,
at about ! � 35 MeV, corresponds to the breakup of the �
core and has contributions from both T channels (about
40% of strength due to the T � 2 channel). The 6Li cross
section does not show such a substructure. This is probably
due to the fact that the breakup into two three-body nuclei,
3He �3H, fills the gap between the halo and the � core
peaks. Note that in the case of 6He a corresponding
breakup into two identical nuclei, 3H� 3H, is not induced
by the dipole operator. We have also integrated the
various cross sections up to 100 MeV and find the
following enhancements #TRK of the Thomas-Reiche-
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FIG. 1. Cross section ��!� with various values of Kmax: 6Li
with MTI-III (a) and 6He with MN potentials (b).
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Kuhn (TRK) sum rule [59:74 NZ=AMeVmb�1�
#TRK�]: 0.42 (6Li, MN), 0.47 (6Li, MTI-III), 0.45 (6He,
MN), and 0.50 (6He, MTI-III).

We already mentioned that we do not expect that the
semirealistic central S-wave potentials lead to realistic
results in all details. In particular, an additional P-wave
interaction should affect somewhat the low-energy cross
section. Nevertheless, we think it is instructive to compare
with experiment. In Fig. 3(a) the results of a recent 6He
experiment [10,18] are shown. The cross section was
extracted from the 6He Coulomb excitation using a secon-
dary radioactive 6He beam. Close to threshold the theo-
retical cross section has a different shape than the
experimental one. We should mention that a better thresh-
old behavior is obtained in a cluster model description of
6He with an inert � core and two neutrons interacting with
it via a P-wave potential [22,23]. Additional information
comes from a recent 6Li�7Li; 7Be�6He experiment [24]
where an E1 resonance of 6He is found at ! � 8:5 MeV
(width 15 MeV). This result is not too different from our
low-energy peak. A similar value for the excitation energy
is found in a no-core-shell-model calculation with realistic
NN interactions [25].

In the case of 6Li the experimental situation is more
complex (note that there is no transition of the isovector
dipole operator to the T � 0 d� � channel). The
semi-inclusive channel 6Li��;

P
n� measured in Ref. [19]

corresponds to the total ��!� only at ! � 15:7 MeV. At
higher !, channels not involving neutrons open up (3He�
3H, 3H� p� d). Regarding these two channels we
show experimental data from Refs. [20,21]. To make the
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FIG. 2. Cross section ��!� with both NN potentials: 6Li (a),
6He with channel T � 2 and sum of T � 1 and 2
(total) (b).
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FIG. 3. Theoretical and experimental results for cross section
��!�: 6He (theoretical curves are convoluted with the Gaussian
instrumental response function [10,18]) (a), 6Li with experimen-
tal data from [19–21] (see text) (b).

VOLUME 89, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JULY 2002
comparison simpler we have summed these data with those
of [19] [see Fig. 3(b)]. At low ! there is a similar differ-
ence of theoretical and experimental results as for the 6He
case. The comparison does not improve with increasing !.
On the other hand, the experimental situation is not settled
as one can note from the different results of Refs. [20,21].

In the following we summarize our results briefly. We
present the first microscopic calculation of an inelastic six-
body cross section considering the complete six-body FSI.
To this end we make use of the LIT method [1] and expand
ground and Lorentz states in hyperspherical harmonics via
the EIHH approach [9]. The LIT is calculated with the help
of the Lanczos technique [17]. The calculated total photo-
absorption cross sections of 6He and 6Li show rather differ-
ent structures. While 6Li exhibits a single broad giant
resonance peak, one clearly distinguishes two well sepa-
rated peaks for 6He. The low-energy peak is due to the
breakup of the 6He neutron halo, whereas the second peak
corresponds to the breakup of the � core. A comparison
with experimental data shows that the theoretical cross
sections have a different shape at threshold, which is
presumably explained by the missing P-wave interaction
in the employed semirealistic central S-wave potentials.
The situation in the giant dipole peak region is much less
clear, either because of the lack of experimental data (6He)
or because existing data do not lead to a unique picture
(6Li). It is evident that further experimental activities are
necessary in order to shed more light on the six-nucleon
photoabsorption cross sections. On the other hand, further
052502-4
progress has also to be made in theory, in particular, by
addressing the question of the role of P-wave interactions
in the total photoabsorption cross section of the six-body
nuclei.
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