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Freeze-Out Problem in Hydrokinetic Approach to A�A Collisions
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A new method for evaluating spectra and correlations in the hydrodynamic approach is proposed. It is
based on an analysis of the Boltzmann equations (BE) in terms of probabilities for constituent particles to
escape from the interacting system. The conditions of applicability of the Cooper-Frye freeze-out
prescription are considered within the method. The results are illustrated with a nonrelativistic exact
solution of BE for an expanding spherical fireball as well as with approximate solutions for ellipsoidally
expanding ones.
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based on Boltzmann equations (BE) and, as a consequence,
when applied to realistic systems, fails as the particle

�t ; t � dt �. This additional portion of escaped particles
can be produced only from the interacting part of the
Introduction.—The hydrodynamic approach to multi-
particle production in hadron collisions was proposed in
1953 by Landau [1]. It considers as the initial state a very
hot and dense thermal gas of particles soon after the
collision, which then expands hydrodynamically until
some finite time when the picture of continuous medium
is destroyed. The latter stage, so-called freeze-out, hap-
pens when the mean free path of particles becomes com-
parable with the smallest of the system’s characteristic
dimensions: its geometrical size or hydrodynamic length.
Hydrodynamic models find serious utilization in the de-
scription of high-energy nuclear collisions, especially at
CERN SPS and Brookhaven RHIC. Studying predicted
spectra of different particle species versus the initial con-
ditions (IC) and equation of state (EoS), one could get
information on the early (partonic) stage of the ‘‘little
bang,’’ such as a possible formation of quark-gluon plasma
(QGP) or even a type of the phase transition between QGP
and the hadron matter. The problem is, however, whether
the predicted spectra with given IC and EoS in hydro-
dynamic models are unambiguous.

The standard and widely used method to get the spectra
is the so-called Cooper-Frye prescription (CFp) [2] that
treats the system at the decay stage of evolution as a locally
equilibrated ideal gas at some hypersurface. However, this
prescription presents some serious problems because, usu-
ally, the freeze-out hypersurface contains non-space-like
sectors, and, as a result, artificial discontinuities (shock
waves) across those hypersurfaces appear to adjust CFp to
energy and momentum conservation laws [3]. Moreover,
the results of many studies based on cascade models
contradict the idea of sudden freeze-out: particles escape
from the system during almost the whole time of its
evolution and do not demonstrate the local equilibration
at late stages. The method of continuous emission [4] gave
an important step in the description of particle freeze-out
from 4-volume within the hydrodynamic approach.
However, it is not fully satisfactory because it is not
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escape probability becomes large. In the present paper
we propose an approximate method for describing spectra
within the hydrokinetic approach that is simpler for dense
systems than a pure microscopic approach and apply it
zto a description of particle production from an expanding
and interacting Boltzmann gas that is initially in local
equilibrium.

Boltzmann equation, probability to escape, and escap-
ing function.—The BE for the distribution function f�x; p�
in the case of no external forces has the form

p�

p0

@f�x; p�
@x�

� Fgain�x; p� � Floss�x; p� : (1)

The terms Fgain and Floss are associated with the num-
ber of particles which, respectively, came to the point
�x; p� and leave this point because of collisions. The term
Floss�x; p� � R�x; p�f�x; p� can easily be expressed in
terms of the rate of collisions of the particle with momen-
tum p, R�x; p� � h
vrelin�x�. The term Fgain has a more
complicated integral structure and depends on the differ-
ential cross section. To develop a corresponding method,
let us split the distribution function at each space-time
point into two parts: f�x; p� � fint�x; p� � fesc�x; p�, x �
�t;x�. The first one, fint�x; p�, describes the fraction of the
system which will continue to interact after the time t. The
second one, fesc�x; p�, describes the particles that will
never interact after the time t. Of course, the latter ex-
presses only probabilities and cannot be ignored when one
is solving BE: possible interactions with the escaping part
also have to be taken into account, in order to find the
escape probabilities.

The function fesc�x; p� is built up as follows. Let us
denote by x0 	 �t0;x� �p=p0� �t

0 � t�� the space-time
point where a particle in x with momentum p would be
if it moved freely. Consider, at each vicinity of the phase-
space point �x; p�, the number of particles that have es-
caped from the interacting system during the time interval
0 0 0
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system. Also, these particles are only among those that
came to the phase-space vicinity of the point �x0; p� just
after an interaction during the time dt0, suffering the last
collision there. Therefore, the additional contribution
to fesc�x; p� from the time interval �t0; t0 � dt0� is
P �x0; p�Fgain�x0; p�dt0 for t0 < t and is zero for t0 > t.
Here P �x; p� is the probability for any given particle at x
with momentum p not to interact any more, propagating
freely. So collecting all the contributions starting from
some initial time t0, we have

fesc�x; p� � fesc�x0; p� �
Z t

t0

dt0 P �x0; p�Fgain�x0; p� ; (2)

where x0 	 �t0;x� �p=p0��t0 � t�� and fesc�x0; p� corre-
sponds to the portion of the system, which is already free at
t0. It follows from (2) that

1

P �x; p�
p�

p0

@
@x�

fesc�x; p� � Fgain�x; p� : (3)

The escape probability P �x; p� can be expressed explic-
itly in terms of the rate of collisions along the world line of
the free particle with momentum p as

P �x; p� � exp

�
�

Z 1

t
dt0 R�x0; p�

�
(4)

or it satisfies the differential equation

1

P �x; p�
p�

p0

@
@x�

P �x; p� � R�x; p� �
Floss�x; p�
f�x; p�

: (5)

On the other hand, according to the probability definition,

fesc�x; p� � P �x; p�f�x; p� : (6)

This equation, where fesc is given by Eq. (2) and P by
Eq. (4), is one of the integral forms of BE (1). One can
check directly that f � fesc=P is governed by BE and,
thus, our definitions of fesc�x; p� and P �x; p� are consistent
with BE.

For an initially finite system with a short-range inter-
action among particles, actually the system becomes free at
large enough times tout, so P �x; p� ! 1 and fesc�x; p� !
f�x; p� in this limit. Our proposal is to utilize, for the
description of particle spectra in A� A collisions, the
escaping function (2) with P �x; p� [and thus R�x; p�; see
Eq. (4)] and Fgain evaluated just in the local equilibrium
(l.eq.) approximation for f�x; p�. In this case the function
f � fesc=P corresponds to a solution of the kinetic equa-
tion in relaxation time approximation,

p�

p0

@f�x; p�
@x�

� �
f�x; p� � fl:eq:�x; p�

��x; p�
; (7)

with the relaxation time ��x; p� being expressed through
the rate of collisions Rl:eq:�x; p� of a particle with momen-
tum p; � � 1=Rl:eq:. When t ! 1, the relaxation time
� ! 1 also, indicating a transition to the free streaming
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regime. Equation (7) can be derived also from BE with an
approximation of the right-hand side (rhs) by Fgain �
Rl:eq:fl:eq: and Floss � Rl:eq:f [5]. Note that the macroscopic
parameters of the l.eq. distribution function are governed,
in general, by nonideal hydrodynamic equations that are
derived from Eq. (7) in the standard way (see, e.g., [5]).

The approximation proposed is based on collecting all
the liberated particles during the system evolution and,
therefore, takes into account rather nonequilibrium pro-
cesses, similar to particle emission from the periphery of a
system. Obviously, it should describe well the spectra in a
fast transition of the system from an initial equilibrium
state to free streaming (e.g., explosion), as well as in a
fairly smooth transition when l.eq. is nearly maintained till
rather low densities. Formally, comparing with the exact
solution of BE, we neglect in Eq. (2) the term

PFgain � P l:eq:Rl:eq:fl:eq: ; (8)

integrated along the world line of a particle from t0 to tout.
At part of a trajectory crossing a sufficiently dense space-
time region, neither Fgain nor P differ much from the
corresponding hydro terms in Eq. (8). At the later stage
of expansion, when the densities are small [normally
n�x� � t�3] , the values of Fgain terms, for both hydro
and exact solutions, are rather small. So the integrated
contribution of the neglected term, Eq. (8), coming from
that part of a trajectory, is also small no matter how much
the l.eq. distribution function fl:eq: deviates there from the
exact solution f. As for the most delicate transition region,
one can expect that the neglected term (8) in this region
could not be important, too. In detail, the transition from
the initial l.eq. state to free streaming is rather fast at a
periphery of the system, so the correspondent integrated
contribution of (8) is small. The contribution of the
neglected term from trajectories crossing a central part of
the system could be, for l.eq. initial distributions, small
also if the deviation from l.eq. is slight until rather small
densities. We shall discuss below some examples of such a
behavior.

Particle spectra and correlations.—To describe the in-
clusive spectra of particles,

p0 dN
dp

� ha�p api; p0
1p

0
2

dN
dp1dp2

� ha�p1
a�p2

ap1
ap2

i ;

(9)

the asymptotic equality fesc�x; p� � f�x; p� can be used,
replacing the total distribution function f in all irreducible
averages in (9),

ha�p1
ap2

i �
Z

out

d
� p
� exp�iqx�f�x; p� ; (10)

by fesc. Here p � �p1 � p2�=2, q � p1 � p2, and the
hypersurface 
out just generalizes tout. Applying the
Gauss theorem and recalling that @�p

� exp�iqx�� � 0
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FIG. 1 (color online). The space-time �t; r� dependence of the
emission function averaged over momenta for an expanding
spherically symmetric fireball containing 400 particles with
mass 1 GeV and with cross section 
 � 40 mb, initially at rest
and localized with Gaussian radius parameter R � 7 fm and
temperature T0 � 0:130 GeV.
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for particles on the mass shell, one obtains, using,
respectively, general Eqs. (3) and (1) and supposing their
analytical continuation off the mass shell,

ha�p1
ap2

i � p�
Z

0

d
�fesc�x0; p�eiqx

� p0
Z 
out


0

d4xP �x; p�Fgain�x; p�eiqx; (11)

ha�p1
ap2

i � p�
Z

0

d
�f�x0; p�e
iqx

� p0
Z 
out


0

d4xFgain�x; p� � Floss�x; p��eiqx:

(12)
Thus, the use of an escaping function as the asymptotic

interpolation to the solution of BE is equivalent to taking,
as the source function for the spectra and correlations, the
4-volume emission function S � PFgain together with
direct emission fesc�x0; p� from an initial 3D hypersurface

0. The CFp, defined by Eq. (10) with substitution

out ! 
f:o: and f ! fl:eq:, treats particle spectra as results
of rapid conversion of a l.eq. hadron system into a gas
of free particles at some hypersurface 
f:o:. Formally,
it corresponds to taking the cross section tending to infin-
ity at t < t
f:o:

(to keep a system in the l.eq. state) and
zero beyond t
f:o:

. Then P �t;x; p� � �t� t
f:o:
�x�� (and

so fesc � 0 at t < t
f:o:
), and S � PFgain �

�t� t
f:o:
�x��fl:eq: in Eq. (11).

Let us now analyze the particle-spectrum formation
process based on simple analytical models. It was recently
shown [6] that, if at an initial time t � t0 � 0 a nonrela-
tivistic ideal gas has an ellipsoidally symmetric Gaussian
density distribution and a self-similar velocity profile u�x�,
then the solution for ideal hydrodynamics has the form
[C � v� u�x�, v � p=m, V �

Q
3
i�1 Xi]

f�t;x; v� �
N
V

�
m

�2��2T

�
3=2

exp

�
�
mC2

2T
�

X3
i�1

x2i
2X2

i

�
;

(13)

where

Xi
�XXi �

T
m
; T � T0

�
V0

V

�
2=3
; ui �

_XXi

X
xi : (14)

In the spherically symmetric case, when all Xi are equal,
the l.eq. distribution function (13) with (14) is an exact
solution of BE [7]. One can easily check that the momen-
tum spectrum as well as the interferometry radius, com-
puted at any time t (at any isotherm) or at any other
hypersurface enclosing the system, are identical to those
calculated at the initial time t � 0. The reason is that, in the
spherically symmetric case, the l.eq. function (13) makes
the left-hand side of BE (1) zero, as well as the rhs,
rendering the evolution of the interacting gas similar to a
free streaming. Then the volume integral in Eq. (12) van-
ishes, and in this case CFp formally gives the correct
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spectrum, but its physical meaning is completely different
from the naively expected one. There is no clearly defined
unique freeze-out hypersurface: neither the escape proba-
bility P nor the emission function S reveals a sharp
behavior in the (t;x) plane, but are rather smooth functions.
This is demonstrated in Fig. 1 with the average (in v)
emission function hSi � hPFgaini � hPRfi, where P is
calculated according to Eq. (4).

Therefore, we can conclude that the difference between
final spectra (and interferometry radii) at 
out and what
could be found at 
0 is due to dissipative effects (devia-
tions from l.eq.), which make the integral over 4-volume in
Eq. (12) nonvanishing. The contribution of dissipative
effects can be essential even if the evolution of the system
is governed with good accuracy by ideal fluid hydro-
dynamics that take place for fairly high densities or/and
cross sections, and so f�x; p� � fl:eq:�x; p�. In this case,
p�@�f�x; p� � p�@�fl:eq:�x; p� � "fl:eq:�x; p�, where "
does not depend on the density and the cross section but
is tied, in particular, with symmetry properties of the
hydrodynamic expansion. For the above discussed exact
spherically symmetric solution of BE, " � 0, but in the
general case " � 0 and, as a result, for high densities
particle rescattering can lead to a serious changing of
momentum spectra as compared to the initial ones, depend-
ing on the initial conditions.

Typically, however, the hadron system is not at local
equilibrium during a fairly long later stage of evolution and
f could largely deviate from fl:eq:. The proposed method of
escape probabilities with l.eq. approximation for P �x; p�
and Fgain allows one to use the hydrodynamic approach for
calculations of spectra even in the situation when finite
inhomogeneous systems go through all stages: from local
equilibrium to free streaming. Let us illustrate this, based
052301-3



FIG. 2. The transverse (bottom, at pL � 0) and longitudinal
(top, at pT � 0) spectra of particles, escaped until t � 8 fm=c
from an expanding ellipsoidally symmetric fireball of the same
particles as in Fig. 1, initially at rest and localized with Gaussian
radius parameters X1 � X2 � 7 fm, X3 � 0:7 fm, and temper-
ature T0 � 0:300 GeV. Dashed lines correspond to spectra
calculated according to CFp, applied to the l.eq. distribution
function at T�t� � 0:063 GeV.
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on the exact solution (14) of ideal hydrodynamics for an
initially compressed ellipsoid in the longitudinal direction,
containing the same gas as in the previous example. The
results are presented in Fig. 2, where single-particle spectra
at t � 8 fm for particles that ‘‘escaped’’ [became free
according to Eq. (2)] up to this moment are shown versus
those corresponding to frozen-out ones according to CFp,
applied to l.eq. distribution function (13) on the isotherm
T�t�. One can see that the effective temperature of the
transverse spectrum calculated by using fesc�x; p� is higher
than the one given by the l.eq. distribution function. This is
in agreement with the results of partonic cascade algorithm
of Ref. [8] and also with those of continuous emission [4].
The longitudinal spectrum shows an opposite tendency.

The solution of the ideal hydrodynamics (13) and (14)
also shows that � _XXi=Xi�=� _XXj=Xj� ! 1 with time increas-
ing, so the velocity field of the expanding system tends to a
spherically symmetric one. Such a tendency of the velocity
field is preserved, in the central region, also by the solu-
tions of the Navier-Stokes equation with the same initial
conditions, if transport coefficients are calculated accord-
ing to the Chapman-Enskog (CE) method (we used a hard-
sphere model of interaction). Because of this, the deviation
from l.eq. in the central part of the system, calculated
within the CE method, is rather negligible until the density
becomes quite small. Then, there is a hope to apply CFp
for the soft-momentum spectra, since these particles are
mainly emitted from there. As for the hard-momentum
spectra, one expects that such particles are mostly radiated
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from the periphery of the system at the early times, because
of large hydrodynamic velocities and fast transition to free
streaming there. So, in a rough approximation, one can
apply the generalized CFp, taking into account, first,
p-dependent hypersurface 
f:o: and, second, the deviations
on 
f:o: of the distribution function from l.eq. due to
dissipative effects.

Conclusion.—The proposed method allows one to de-
scribe, in a hydrodynamic approach for A� A collisions,
the evolution of the matter from l.eq. till free streaming.
The method differs from the continuous emission devel-
oped in Refs. [4], where the central object is the interacting
component fint which is approximated by the l.eq. distri-
bution function. However, it is possible to show, by using
an exact solution of BE, that fint has neither isotropic nor
thermal distribution in its local rest frame, even at a
moderate value of hP �x; p�i.

It is worth noting that our method, applied to the
evolution of rarefied hadron gas, overlaps with transport
models. In this aspect, the exact solution of BE discussed
above is useful as a test of numerical cascade algorithms.
The advantage of the method of escaped particles reveals
that when the system is not dilute, it has more complicated
interactions and displays a collective behavior. The hydro-
dynamics is still (or even more) suitable for the description
of such a system, and so our method based on calculations
of probabilities for constituent particles to escape can be
used, considering a concrete model for the particle inter-
action with surrounding medium.

The analysis of the particle-liberation process demon-
strates the crucial role of dissipative effects in the forma-
tion of one- and two-particle spectra. These effects should
be taken into account when experimental data from SPS
and RHIC are treated in a hydrodynamic approach.
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