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We propose a simple scheme for generating rotating atomic clusters in an optical lattice which produces
states with quantum Hall and spin liquid properties. As the rotation frequencies increase, the ground state
of a rotating cluster of spin-1 Bose atoms undergoes a sequence of (spin and orbit) transitions, which
terminates at an angular momentum L� substantially lower than that of the boson Laughlin state. The spin-
orbit correlations reflect ‘‘fermionization’’ of bosons facilitated by their spin degrees of freedom. We also
show that the density of an expanding group of clusters has a scaling form which reveals the quantum Hall
and spin structure of a single cluster.
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and quantum Hall properties. Before proceeding, we first
summarize the general features: (A) As the angular mo-

will impart angular momentum to the system. Once the
system acquires angular momentum, cylindrical symmetry
In this paper we would like to point out some remarkable
features of rotating clusters of spin-1 Bose atoms which
result from the coupling of quantum Hall physics to spin
symmetry through Bose statistics. Our studies are
prompted by the recent experiments on rotating Bose
gases [1] and Bose-Hubbard systems [2], as well as the
theoretical realization of a ‘‘fragmented’’ condensate in
spin-1 Bose gas [3,4], and the theoretical demonstration
that a three-dimensional Bose system can approach the
quantum Hall limit at sufficiently large angular momenta
[5]. As of now, one can release the spin degrees of freedom
of a Bose gas in an optical trap [6], deposit a large amount
of angular momentum into a Bose condensate }, and divide
a Bose condensate into thousands of isolated clusters each
with a few particles [2]. It is natural to ask whether these
capabilities can be combined to produce a large collection
of rotating and spin-carrying clusters. In fact, such possi-
bilities are being considered in some laboratories [7].

There are many reasons for studying these Bose clusters.
First, in these systems two types of strongly correlated
ground states can be realized: quantum Hall droplets and
fragmented Bose spin liquids. While the former is familiar
to condensed matter physicists, the latter is new, with
properties entirely different from the familiar single con-
densate (or coherent) states [3]. It is well known, however,
that these states are very fragile as the number of particles
increases, easily giving way to the highly robust coherent
states [3,8]. On the other hand, such fragility disappears in
small clusters, and the system becomes strongly correlated
in this regime. Second, quantum clusters are amenable to
exact treatments, which may reveal physical principles
operative in a larger scale. Third, amid the growing interest
in using bosons in lattices to process quantum information,
the study of quantum clusters remains a basic step.

We present (i) a simple method to generate rotating
clusters, (ii) the general features of their ground states,
and (iii) the scaling behavior of the density of an expanding
group of clusters, whose specific form reflects spin liquid
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mentum L of the system increases, the interaction energy
will be ‘‘quenched’’ to zero at a critical value L�, consid-
erably lower than that of the boson Laughlin state. (B) As L
increases from 0 to L�, the total spin of the ground state is
specified by its orbital angular momentum, even though the
interaction is invariant under separate spin and orbital
rotations. (C) Both (A) and (B) reflect the phenomenon
of ‘‘fermionization’’ facilitated by the internal degrees of
the freedom (i.e., spin) of the system. This is achieved by
populating bosons in different spin-orbit states, a process
automatic for fermions. (D) The energetics leading to (A)
and (B) also implies that, as the rotational frequency �
increases toward the trap frequency !, the angular mo-
mentum of the ground state will increase in discrete steps
until it reaches L�, and then remains constant until the
system becomes unstable at � > !. We shall now derive
these results.

I. Rotating quantum clusters: their generation and
Hamiltonian.—Consider particles in an optical lattice
with an added rotating quadrupolar potential W�r; t� �
��r21�t� � r22�t��, where ri�t� � r � êei�t�, êe1�t� �
x̂x cos�t	 ŷy sin�t, êe2�t� � ŷy cos�t� x̂x sin�t, and � is
a constant. Such a potential can be generated by a pair of
off-center rotating laser beams as in the Paris experiment
[1]. The single-particle Hamiltonian is then h�t� � T̂T 	
ÛU 	W�r; t�, where T̂T � p2=2M, and ÛU is the periodic
potential of the optical lattice. Deep in the Mott limit, ÛU
is an array of deep wells at lattice sites fRg; the bottom of
each is harmonic, ÛU�r� ! ÛUhar�x� � 1

2M!
2x2 as r ! R,

r � x	R. These wells are so deep that atoms in different
wells are isolated from each other [9]. Shifting the origin to
R, the single-particle Schrödinger equation is i�h@tj�ti �
�T̂T 	 ÛUhar�x� 	W�x	R; t��j�ti. Defining j�ti �
e�i�a�t��p�b�t��x�=�he�i��t�e�i�tL̂Lz j�ti, and with appropriate
choices of a, b, and � [10], the Schrödinger equation can
be written as i�h@tj�ti � Kj�ti, where K � T̂T 	
ÛUhar�x� 	W�x; 0� ��Lz is time independent, and Lz �
xpy � ypx. Since W�x; 0� breaks cylindrical symmetry, it
2002 The American Physical Society 050401-1



FIG. 1. V L for an N � 4 cluster with c2 > 0. (b) The column
densities of a N � 5 cluster with with L � 0; 3; 6; 9; 12. The
central density of these clusters decreases with increasing L. The
L � 12 data is in bold. (c) The spin densities of the L � 3
cluster in (b); (S � 1). Densities, 0, are scaled by 00 � 1=$a2.
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can be restored by turning off W, and K reduces to the
simple form K � p2=2M	 1

2M!
2x2 ��Lz.

Including particle interactions, the Hamiltonian of a ro-
tating spin-1 Bose cluster is, in first quantized form, ĤH �
�L̂Lz � K̂K 	 V̂V , where K̂K �

P
i K̂Ki, V̂V �

P
i>j V̂V ij,

V̂V ij � �co 	 c2Fi � Fj���ri � rj�, where c0 and c2 are
density-density and spin-spin interactions [11,12].
Theoretical estimates show that c0 > 0 for both 23Na and
87Rb; and that c2 > 0 (antiferromagnetic) for 23Na and
c2 < 0 (ferromagnetic) for 87Rb [11]. Because of the simi-
larity of scattering lengths in different angular momentum
channels, it is found that jc2j=c0 � 5% for both cases.
From now on, we shall focus on values of c0 and c2
appropriate for 23Na and 87Rb. For simplicity, we first
consider zero magnetic field. Magnetic field effects will
be considered at the end.

The eigenvalues of K̂K are [5] En;m;nz=�h � �!	��n	
�!���m	!nz, where n, m, and nz are non-negative
integers. For very tight traps, �h! > Nc0=a3 with a ��������������
�h=M!

p
, only states in the ‘‘lowest Landau level’’ (LLL),

�n � 0; m; nz � 0�, will appear in the ground states. The
wave function of the state �0; m; 0� is wm�x; y�f0�z�,
where wm�x; y� � ume�juj2=2=

���������������
$a2m!

p
, f0�z� � e�z

2=2a2=
�$a2�1=4, and u � �x	 iy�=a. The many-body state is then

j�i �
Z
B��u�; �&��

YN
i�1

 ̂ y
&i
�ri�j0i ; (1)

where
R
�� � �� �

RQ
N
i�1�dri f0�zi�e

�juij2=2� �� � ��, �u� �
�u1; u2; :::uN�, &i � 1; 0;�1 labels the spin of the ith
boson, �&� � �&1; &2; :::; &N�, B��u�; �&�� is a symmetric
homogeneous polynomial of �u� labeled by �&�,  ̂ �r�& is
the field operator in the LLL,  ̂ y

&�r� �
P
m wm �

�x; y�f0�z�a
y
m&, and aym& is the creation operator for the

state �0; m; 0�. In LLL, we have K̂K � �h�!���L̂Lz, L̂Lz �P
1
m�0ma

y
m&am&. Since �V̂V ; L̂Lz� � 0, the ground state of

the Hamiltonian ĤH ��L̂Lz can be determined once the
spectrum of V̂V as a function of Lz �V L� is obtained.

Before proceeding, we define Ax�r� � �� ̂ 1�r� 	
 ̂ �1�r��=

���
2

p
, Ay�r� � �i� ̂ 1�r� 	  ̂ �1�r��=

���
2

p
, and

Az�r� �  ̂ 0�r�. Under a spin rotation, ~AA rotates as a 3D
vector in �xyz� space. Thus, states with total spin (S � 0, 1,
and 2) formed by two bosons at r1 and r2 are ~AAy

1 � ~AAy
2 ,

~AAy
1 � ~AAy

2 , and Ay
i1A

y
j2 �

1
3�ij

~AAy
1 � ~AAy

2 , where ~AA1 � ~AA�r1�.
II. The role of internal degrees of freedom and the

‘‘quenching’’ angular momentum L�.—We have numeri-
cally diagonalized V̂V up to N � 5 particles. The spectrum
V L of the N � 4 cluster with c2 > 0 is shown in Fig. 1(a).
It shows a clear correlation between spin and orbital an-
gular momentum in the ground state. In the following, we
shall explain the origin, the systematics, and the analytic
structures of these states.

Since c0 > jc2j, the minimum of the interaction V̂V ij is
zero, which occurs if the relative angular momentum ‘
between bosons i and j is nonzero. For scalar bosons, Bose
statistics demands ‘ � 2. A pair of spin-1 bosons,
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however, can make V̂V ij � 0 with ‘ � 1 by making its spin
part antisymmetric, i.e., forming a spin-1 state

R
�u1 �

u2� ~AA
y
1 � ~AAy

2 j0i. This shows that angular momentum states
forbidden to scalar bosons will become accessible in the
presence of internal degrees of freedom. Relative angular
momentum, however, costs kinetic energy. One will then
have to balance potential and kinetic energy.

Among all the ground states, the state with minimum
angular momentum L� that ‘‘quenches’’ interaction (i.e.,
making V̂V � 0) plays a special role. It will be referred to
as the ‘‘minimal quenching’’ state j��i. The vanishing of
V̂V can occur only if no two bosons can occupy the same
point in space, meaning that B in Eq. (1) contains a
Laughlin factor W�z� � �N�i>j�1 �ui � uj�. For spinless
particles, Bose statistics demand that W appear twice;
resulting in a minimal quenching state B � W2, with L� �
N�N � 1�. For spin-1 bosons, the condition for quenching
means

B��u�; �&�� � W�u�F��u�; �&�� ; (2)

where F��u�; �&�� obeys Fermi statistics. Thus L� �
N�N � 1�=2	 P, where P is the lowest angular momen-
tum possible for the fermionic wave function F.

Since there are only three distinct spin states for spin-1
bosons, the only clusters whose quenching ‘‘fermion’’
component F has L � 0 are N � 2; 3. For N � 2, we
have j��i�2� �

R
u12 ~AA

y
1 � ~AAy

2 j0i, where uij � ui � uj. It
has �L� � 1; S � 1�. For N � 3, we have j��i�3� �R
u12u23u31 ~AA

y
1 � ~AAy

2 � ~AAy
3 j0i, with �L� � 3; S � 0�. For
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TABLE I. The ground states constructed from the rules in
Section III. The ground state is written as j�i �R
’L D

�N�y
S j0i, using �12 � ~AA1 � ~AA2, �123 � ~AA1 � ~AA2 � ~AA3,

~BB12 � ~AA1 � ~AA2, A	 � Ax 	 iAy, w12...N �
Q
N�i>j�1�ui � uj�,

uij � ui � uj. All states listed are exact eigenstates except those
with L � 4; 5; 6. For L � 4, the last factor of ’ can be either u24
or u34. The exact ground state is a combination of both. The state
of L � 5 and 6 has 99:6% and 94% overlap with the exact
ground state. The minimal quenching state is marked with an
asterisk.

N L S D�N�
S , c2 > 0 S D�N�

S , c2 > 0 ’L

2 0 0 �12 2 A1	A2	 1
1* 1 B12 1 B12 u12

3 0 1 �12
~AA1 3 A1	A2	A3	 1

1 1 ~BB12 � ~AA3 2 B12	A3	 u12
2 1 �12

~AA1 2 �12
~AA1 u12u13

3* 0 �123 0 �123 w123

4 0 0 �12�34 4
Q

4
i�1 Ai	 1

1 1 ~BB12�34 3 B12	A3	A4 u12
2 0 ~BB12 � ~BB34 2 B12	B34	 u12u34
3 1 �123

~AA4 1 �123
~AA4 w123

4 0 ~BB12 � ~BB34 2 B12	B34	 u12u14u23 �

�u24; u34�

5 1 �123
~AA4 1 �123

~AA4 w123u24u34
6 1 �12

~BB34 3 A1	A2	B34	 u212u13u14 �

u24u34
7* 1 �123�u4 ~AA4� 1 �123�u4 ~AA4� w1234
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N > 3, the quenching fermionic function F must have
nonzero angular momentum; otherwise there will be two
‘‘fermions’’ occupying the same state. Particles must there-
fore populate different spin and orbital states. This proce-
dure gives rise to a unique minimal quenching structure,
whose general form will be clear after we enumerate a few
cases. Writing j��i�N� �

R
WD�N�j0i, we have

D�4� � � ~AAy
1 � ~AAy

2 � ~AAy
3 � �u4 ~AA

y
4 �;

D�5� � � ~AAy
1 � ~AAy

2 � ~AAy
3 � �u4 ~AA

y
4 � u5 ~AA

y
5 �;

D�6� � � ~AAy
1 � ~AAy

2 � ~AAy
3 � �u4 ~AA

y
4 � u5 ~AA

y
5 � u6 ~AA

y
6 �;

D�7� � � ~AAy
1 � ~AAy

2 � ~AAy
3 � �u4 ~AA

y
4 � u5 ~AA

y
5 � u6 ~AA

y
6 � �u

2
7
~AAy
7 � ;

(3)

which gives �L� � 7; S � 1�, �L� � 12; S � 1�, �L� �
18; S � 0�, and �L� � 26; S � 1� for N � 4; 5; 6, and 7,
respectively. In contrast, the corresponding L� for scalar
bosons are 12, 20, 30, 42, about 100% higher. Since W is
antisymmetric, only the antisymmetric part of D�N�will
appear in j��i�N�. The antisymmetrization turns the opera-
tor product into a determinant, just as fermion systems
[13]. This prescription yields spin S � 0; 1; 1 for N �
0; 1; 2�mod3� at quenching with L� � 2N2=3� N 	 S.

Note that, as the particle number increases, more and
more singlets made up of boson triplets appear in the
minimal quenching state. This is a clear sign that the
system becomes a spin liquid while evolving into a full-
fledged quantum Hall state. Note also that the Laughlin
factor W forces all ground states with L > L� to have zero
interaction energy.

III. The route to quenching.—We now turn to the ground
states with L < L�. To illustrate the correlation between S
and L, we denote the spin of the ground state of V̂V with
angular momentum L as SL, and display their value up to
L� for a cluster of N bosons as �SL�N � �S0; S1; :::; SL� �N .
For c2 > 0, we have �0; 1�2; �1; 1; 1; 0�3, �0; 1; 0; 1,
0; 1; 1; 1�4, �1; 1; 1, 1; 1; 1, 1; 1; 1, 1; 0; 0, 1�5 ; and for c2 <
0, we have �2; 1�2, �3; 2; 1; 0�3, �4; 3; 2; 1, 2; 1; 1; 1�4, �5; 4; 3,
3; 1; 1, 3; 1; 1; 1; 2; 2; 1�5.

To understand these structures, we note that, since L<
L�, there is not enough angular momentum to produce a
Laughlin factor to prevent the coincidence of any two
bosons. Still, it is desirable to generate as many boson
pairs with relative angular momentum of unit strength as
possible. This consideration then motivates some simple
rules for possible candidates of the ground state and, for
small clusters, they often narrow down to the exact struc-
ture. The rules are (i) for a given L, the ground state of
interaction V̂V will contain a maximum number of pairs
with unit relative angular momentum. (ii) For c2 > 0 (or
c2 < 0), the ground state of V̂V will have a minimum (or
maximum) total spin consistent with rule (i) and Bose
statistics. We have constructed states according to these
rules for clusters up to N � 4 bosons. The results are given
in Table I, which reproduces the sequences �SL��4� listed
050401-3
above. When compared with the exact numerical results in
the limit jc2j=c0 � 1, we found that most of states in
Table I coincide with the exact numerical results, or other-
wise have over 94% overlap with them. Since the inter-
action V̂V is invariant under separate spin and orbital
rotation, the correlation between S and L comes entirely
from statistics, just as in Hund’s first and second rule.

In Fig. 1(b), we show the densities of a N � 5 cluster
with L � 0; 3; 6; 9; 12, and in Fig. 1(c) we show the spin
densities for the cluster with N � 5; L � 3, and S � 1.
The emergence of a quantum Hall plateau in the density is
clear near the quenching limit. (See also Section V.)

IV. The ground states as a function of �.—Experiments
performed at fixed rotational frequency � are described by
the Hamiltonian H � H ��Lz. The ground state is
given by the minimum of H L � V L 	 �h�!���L,
where V L is the ground state energy of V̂V with Lz � L.
If L were a continuous variable, and V L a smooth curve,
the optimum value L0 will satisfy �h�!��� �
�@V L=@L, and @2V L=@2L > 0. In addition, we have
@�=@L0 � �@2V L=@2L�Lo . From Fig. 1(a), we see that
aside from a small number of cusps (in this case at L � 5
and 7) the envelop of V L is smooth and concave up,
implying that as � is increased the angular momentum
050401-3
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increases in small (but discrete) steps, reaching L� at a
critical frequency ��.

For � > �� the minimum of H L within the interval
�0< L< L�� still occurs at L�. However, over the interval
L > L�, we have V L � 0, and hence H L � �h�!���L
has a minimum at L�. This establishes statement (D) that,
for sufficiently rapid rotation, the angular momentum satu-
rates at L�.

V. The spin and quantum Hall signature of rotating
clusters.—Because of the large number (Q) of identical
but phase incoherent clusters in the insulating phase, many
quantities measured for the entire group of clus-
ters coincide with the quantum mechanical averages of
the same quantity within a single cluster, except that it is
magnified by Q. This is best illustrated by considering the
density of the entire group of clusters after the trap is
turned off. Because of tight trapping, the expansion is
mainly driven by the localization energy of the trap and
is therefore ballistic. The field operator for the cluster (say,
at R � 0) then evolves as  ̂ &�r� �

R
dr0G�r� r0; t� �

 ̂ &�r0�, where G�r; t� �
Q

3
i�1

~GG�ri; t�, ~GG�x; t� � �M=
2$i�ht�1=2 exp�iMx2=2�ht�. Before the expansion, the field
operator is  ̂ &�r� �

P
‘ w‘�r?�f0�z�a‘&, and the single-

particle density matrix of the cluster is

0&5�r� � h ̂ y
5�r� ̂ &�r�i � g&5�r?�v�z� ; (4)

g&5�r?� �
X
‘

jw‘�r?�j2ha
y
‘5a‘&i ; (5)

with v�z� � jf0�z�j
2, and r? � �x; y�. In the insulating

regime, the density matrix of the entire cluster
collection is 0all

&5�r� �
P

R 0&5�r�R�, where the sum
is over all clusters. After the expansion, we
have  ̂ &�r; t� �

P
‘ w‘�r?�f0�z�a‘&, w‘�r?� �

R
~GG�x�

x0; t�~GG�y� y0; t�w‘�r0?� dr
0
?, and f0�z� �

R
~GG�z�

z0; t�f0�z
0� dx0. This implies 0&5�r; t� � h ̂ y

5�rt� ̂ &�rt�i �
g&5�r?�v�z�, where g&5�r?� and v�z� are g&5�r?�
and v�z� in Eq. (4) with w‘ and f0 replaced by w‘ and
f0. By evaluating g&5 and v, we find that g&5�r� �
��t��2g&5�r=��t��, v�z� � ��t��1v�z=��t��, where
��t� �

��������������������
1	 �!t�2

p
. We then have

0all
&5�r; t� � ��t��3

X
R

0&5f�r�R�=��t�g : (6)

The diagonal elements of Eq. (6) give the density of each
spin component. Equation (6) shows that the density after
expansion is simply a sum of all the expanded clusters,
each of which obeys a scaling relationship. For times t�
1=!, each cluster has expanded to a size much larger than
the dimension �$� of the origin cluster ensemble; Eq. (6) is
then well approximated by 0all

& �r; t� � Q=�!t�30&�r=!t�
up to a correction of order O�$=a!t�. The density of each
050401-4
spin component of the entire expanded ensemble at long
times therefore reproduces that of each individual cluster.
(For magnetic field effects, see [14].)

The identity
P
&

R
 ̂ y
&�r� �r=a�2 ̂ &�r� � L̂Lz 	 N̂N in the

LLL implies that, if L is the angular momentum of a cluster
before expansion, then the mean square radius at time t�
1=! is r2 �

R
r2?0

all�r; t� � Qa2�!t�2�L	 N�, and z2 �R
z2?0

all�r; t� � Qa2�!t�2N=2. One can therefore extract
the angular momentum of the system from the shape of the
entire expanded clusters. Moreover, the difference of the
mean squared radius between successive L states as �
increases is Qa2?�!t�
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