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Chaotic Dot-Superconductor Analog of the Hanbury Brown–Twiss Effect
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As an electrical analog of the optical Hanbury Brown–Twiss effect, we study current cross correlations
in a chaotic quantum dot-superconductor junction. One superconducting and two normal reservoirs are
connected via point contacts to a chaotic quantum dot. For a wide range of contact widths and trans-
parencies, we find large positive current correlations. The positive correlations are generally enhanced by
normal backscattering in the contacts. Moreover, for normal backscattering in the contacts, the positive
correlations survive when suppressing the proximity effect in the dot with a weak magnetic field.
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In quantum theory, identical particles are indistin-
guishable. Under exchange of any pair of particles,
the many-body wave function remains invariant up to a
sign, positive for bosons and negative for fermions. This
exchange symmetry was used in the pioneering inter-
ferometer experiment with photons, by Hanbury Brown
and Twiss [1]. Several theoretical works [2–4] have
suggested different analogs for this experiment with
electrons in mesoscopic multiterminal conductors. It has
been shown [3] that the fermionic statistics of electrons
leads to negative correlations between currents flowing in
different terminals. Such negative correlations were also
recently observed experimentally [5].

When normal conductors are connected to a super-
conductor, correlations are introduced between electrons
and holes due to Andreev reflections at the normal-
superconductor interface, a phenomenon known as the
proximity effect. The influence of the proximity effect on
the current auto-correlations, i.e., the shot noise, in two-
terminal diffusive normal-superconductor junctions was
recently studied [6,7].

In multiterminal conductors, Andreev reflection can lead
to positive cross correlations between currents flowing in
the contacts to the normal reservoirs [8,9]. So far, positive
correlations have been predicted only for single mode junc-
tions [8–10]. Moreover, in multiterminal diffusive junc-
tions it was found that cross correlations are negative in
the absence of the proximity effect [11]. This raises two
important questions: (i) Are the positive correlations in
normal-superconducting junctions a large effect, of the or-
der of the number of modes in multimode junctions, and
if this is the case (ii) is the proximity effect necessary to
obtain these positive correlations?

In this Letter, we give an answer to these two questions.
The positive correlations are large, and, surprisingly, be-
come enhanced by normal backscattering at the normal-
superconducting interface. Moreover, positive correlations
can exist even in the absence of the proximity effect, if the
normal-superconductor interface is nonideal.

We study the current correlations in a system consisting
of a chaotic quantum dot connected via point contacts to
one superconducting and two normal reservoirs. Systems
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consisting of chaotic dots coupled to superconductors have
recently [12] attracted a lot of interest. The generic prop-
erties of the model makes our result qualitatively relevant
for multiterminal normal-superconducting structures with
random scattering.

A schematic picture of the system is shown in Fig. 1.
A quantum dot is connected to two normal reservoirs
(N1 and N2) and one superconducting reservoir (S) via
quantum point contacts. The contacts to the normal and
superconducting reservoirs have mode independent trans-
parency GN and GS , respectively, and support N and M
transverse modes. The conductances of the point contacts
are much larger than the conductance quanta 2e2�h, i.e.,
NGN , MGS ¿ 1, so Coulomb blockade effects in the dot
can be neglected. The two normal reservoirs are held at the
same potential V and the potential of the superconducting
reservoir is zero.

We consider the case where the classical motion in the
dot is chaotic on time scales longer than the ergodic time
terg. The quasiparticle dwell time in the dot, h̄�ETh, is
assumed to be much larger than terg, but much smaller
than the inelastic scattering time. Here ETh � �2NGN 1

MGS�d�p, where d is the mean level spacing in the dot.
Under these conditions random matrix theory [13] can be
used to describe the statistical properties of the scattering
matrix Sd of the dot.
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FIG. 1. A chaotic quantum dot, acting as a beam splitter, is
connected to two normal (N1 and N2) and one superconducting
(S) reservoirs via quantum point contacts.
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Because of the random scattering in the dot, the current
Ii�t� in contact i fluctuates around its quantum statistical
average Īi . We study the zero-frequency spectral density of
the current cross correlations P12 � 2

R
dt DI1�t�DI2�0�,

where DIj�t� � Ii�t� 2 Ii . The correlation can be ex-
pressed in terms of the total scattering matrix S of the dot
and superconductor. We consider the limit of zero tem-
perature and a potential eV much lower than ETh and the
superconducting gap D, where the energy dependence of
the scattering matrix S can be neglected. Moreover, at
jEj , D no quasiparticles can escape into the supercon-
ductor, and S describes [13] only scattering between the
normal reservoirs,

S �

µ
See Seh

She Shh

∂
, Sab �

µ
S

ab
11 S

ab
12

S
ab
21 S

ab
22

∂
, (1)

where S
ab
ij are matrix amplitudes (N 3 N) for injected

quasiparticles (e or h) of type b in lead j to be backre-
flected as quasiparticles of type a in lead i.

Noting that the current fluctuation is just the sum of the
fluctuations of electron and hole currents, the noise power
can be conveniently written [8] as

P12 � Pee
12 1 Phh

12 1 Peh
12 1 Phe

12 , (2)

where the noise power P
ab
12 for correlation between quasi-

particle currents is given by

P
ab
12 � sV

4e3

h

X
i,j�1,2

tr��Sae
1i �ySah

1j �Sbh
2j �yS

be
2i � , (3)

with s � 1�2� for a � b (a fi b). The expression for
the correlations in Eqs. (2)–(3) is an extension of the result
[3] for a purely normal conductor, taking into account both
electron and hole quasiparticles. However, unlike the nor-
mal cross correlations, which are manifestly negative, the
cross correlation P12, can be positive, because the correla-
tions between different types of quasiparticles, Peh

12 1 Phe
12 ,

are positive.
The ensemble averaged correlations �P12� are calculated

using the statistical properties of the scattering matrix Sd

of the dot. We first consider the case with ideal contacts
GN ,GS � 1 and no magnetic field in the dot, i.e., con-
served time reversal symmetry. In this case it is useful to
decompose Sd as (see, e.g., Ref. [13])

Sd �

µ
U 0
0 U 0

∂ µ
r2N ,2N t2N ,M
tM,2N rM,M

∂ µ
UT 0
0 U 0T

∂
, (4)

where U (U 0) is a unitary matrix of dimension 2N 3 2N
(M 3 M), uniformly distributed in the unitary group.
The diagonal matrices r2N ,2N and rM,M have min�2N , M�
elements

p
1 2 Tn and the rest unity (t2N ,M and tM,2N

follow from the unitarity of Sd). Here Tn are the trans-
mission eigenvalues, which have a density [14] r�T� �
�2N 1 M���2p�

p
T 2 Tmin ��T

p
1 2 T �, where Tmin �

��2N 2 M���2N 1 M��2 is the smallest possible
eigenvalue.

Inserting the decomposition into the expression for the
total scattering matrix S we find [13] the quasiparticle
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scattering amplitudes Sab in Eq. (1) as, e.g., See �
U
p

1 2 T��2 2 T �U� (T � 1 2 r2
2N ,2N ). By summing

over injection contacts in the expression for the individual
quasiparticle current correlators in Eq. (3) and inserting
the scattering amplitudes, we obtain

Pee
12 � V

4e3

h
tr�U�1 2 R�U�C1UTRUyC2� (5)

and similar for the other terms P
ab
12 . Here R � T 2��2 2

T�2 are eigenvalues of the matrix product �Seh�ySeh and
the matrix C1 is diagonal with elements �C1�n � 1 for
n # N and 0 otherwise. The matrix C2 � 1 2 C1. The
ensemble average of Eq. (5) is carried out in two steps.
P

ab
12 is averaged over the unitary matrix U, using the di-

agrammatic technique in Ref. [15]. This gives, to leading
order in N , M (i.e., neglecting weak localization correc-
tions) for the total current corellations in Eq. (2),

�P12�U � V
4e3

h

µ
tr�R�1 2 R�� 2

tr�R�tr�1 2 R�
4N

∂
.

(6)

We then perform the average over transmission eigen-
values by integrating �P12�U weighted by the density
r�T�. By using that to leading order in N , we have
�tr�R�tr�1 2 R��T � �tr�R��T �tr�1 2 R��T , we obtain
(�· · ·� � �· · ·�U,T )

�P12�
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�
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2g2
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2 2
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f
2

f2 2 16g3

f5�2

∂
,

(7)

where f�g� � 1 1 6g 1 g2 and g � 2N�M, the ratio
between the conductances of the point contacts connected
to the normal and the superconducting reservoirs. The cor-
relation is normalized with P0 � 4VNe3�h, i.e., it is large,
of order N . The correlation �P12�, plotted in Fig. 2, is posi-
tive for a dominating coupling to the superconductor, but
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FIG. 2. The ensemble averaged current cross correlation �P12�
with (solid line) and without (dashed line) a proximity effect in
the dot, as a function of g � 2N�M . The correlations in the
presence of the proximity effect are positive for a dominating
coupling to the superconductor (g , 0.5), but are negative for
all g when suppressing the proximity effect with a weak mag-
netic field in the dot.
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crosses over (at g � 0.5) to negative values upon increas-
ing the coupling to the normal reservoirs.

In the general case, it is difficult to provide a simple
explanation for the sign and magnitude of the correla-
tions �P12�, since they result from a competition between
�Pee

12 � 1 �Phh
12 � and �Peh

12 � 1 �Phe
12 �, which have opposite

signs and are generally of the same magnitude. It is, how-
ever, possible to get a qualitative picture in certain limits
by studying the different contributing scattering processes.

In the limit g ! 0, the coupling to the normal reservoirs
is negligible and a gap in the spectrum opens up around
Fermi energy in the dot [12]. As a consequence, quasi-
particles injected from one normal reservoir are Andreev
reflected, effectively direct at the contact-dot interface [16],
with unity probability back to the same reservoir. There is
thus no partition of incoming quasiparticles and hence no
noise, P12 � 0.

Increasing the coupling to the normal reservoir, the
probability of normal reflection (	g) as well as cross
Andreev reflection (	g2), from one reservoir to the
other, becomes finite. Since normal reflection is the
dominant process, we can neglect the terms in P12 in
Eq. (3) containing the cross Andreev reflection amplitude
(e.g., Seh

12 ) . This gives �P12� � 8V �e3�h� �tr�See
12�See

12 �y 3

Seh
11 �Seh

11 �y�� � 2P0g, positive since only terms in
�Peh

12 � 1 �Phe
12 � contribute. This shows that the correla-

tions can be explained as the partition noise of injected
electrons, which have a probability &1 to be Andreev
reflected (effectively at the contact-dot interface) and a
probability 	g to be normally reflected.

In the opposite limit, g ¿ 1, the coupling to the super-
conductor is weak and the Andreev reflection probability
is small, of order 1�g. The correlation can be writ-
ten as �P12� � 216V �e3�h� �tr�See

11 �See
11 �ySeh

21 �Seh
21 �y�� �

2P0�g, which is negative since we find that in this limit
only terms in �Pee

12 � 1 �Phh
12 � contribute. This shows that

the correlation can be explained as partition noise of
electrons which have probability &1�2 to be normally re-
flected (without reaching the dot-superconductor contact)
and probability 	1�g to be Andreev reflected.

When the proximity effect is suppressed by a weak mag-
netic field in the dot [16], it is no longer possible to ex-
press the correlations directly in terms of the transmission
eigenvalues T , as in Eq. (6). We instead use the fact that
the scattering matrix Sd of the dot itself is uniformly dis-
tributed in the unitary group, without constraints on the
symmetry of Sd . Since the scattering matrix amplitudes
Sab in Eq. (3) can be expressed [13] in terms of Sd , the
correlations P

ab
12 can be directly averaged over Sd using

the diagrammatic technique in Ref. [15]. This gives, for
the total correlations,

�P12�
P0

� 2
g2�1 1 g�
�2 1 g�4 , (8)

plotted in Fig. 2. The gap in the spectrum is suppressed
and the scattering processes responsible for the positive
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correlations in the presence of the proximity effect are
strongly modified, most notably in the limit g ø 1. As
a consequence, the correlations are manifestly negative
for all g, i.e., there are no positive correlations in the
absence of the proximity effect, similar to what was found
for a metallic diffusive system [11]. It is important to
note here that the weak magnetic field suppresses only the
correlation between the electrons and holes inside the dot,
i.e., the proximity effect; it does not affect the Andreev
reflection process at the dot-superconductor contact.

Until now we have considered only ideal point contacts,
with GN , GS � 1. In an experimental situation, it is of-
ten difficult to obtain an ideal contact between the dot and
the superconductor. It is therefore of interest to study the
situation with a nonideal dot-superconductor contact. We
consider first the case with the proximity effect in the dot.
To calculate the current correlations in this case we note
[13] that a nonideal interface changes the density of trans-
mission eigenvalues, r�T�, but not the distributions of the
unitary matrix U in Eq. (5). The transmission eigenvalue
density is calculated numerically [14,15] for different con-
tact transparencies GS , 1, and the integrals in Eq. (6) are
then performed.

The resulting correlations are plotted in Fig. 3. Sur-
prisingly, the main effect of normal backscattering at the
dot-superconductor contact is to cause a crossover from
negative to positive correlation for a strong coupling to the
normal reservoirs. In this limit, g ¿ 1, injected quasi-
particles undergo at the most one scattering event at the
dot-superconductor contact before leaving the junction.
The expression for the scattering matrices S

ab
ij in Eq. (3)

simplifies considerably and we can derive an analytical ex-
pression for the correlations, giving [17]
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FIG. 3. Ensemble averaged current cross correlations P12
in the presence of normal backscattering at the normal-
superconducting interface (see inset). The contact transparen-
cies GS are 1 (solid line), 0.8 (dash-dotted line) 0.6 (dashed
line), and 0.4 (dotted line). The correlations are plotted as
a function of 2N�MGS . Note that the correlations for a
dominating coupling to the normal reservoirs cross over from
negative to positive on increasing the normal backscattering.
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�P12�
P0

�
1
g

Reh�1 2 2Reh� , (9)

where Reh � G
2
S��2 2 GS�2 is the Andreev reflec-

tion probability of quasiparticles incident in the dot-
superconductor contact. There is a crossover from
negative to positive correlations already for Reh � 1�2,
i.e., GS � 2�

p
2 2 1� � 0.83, in agreement with the full

numerics in Fig. 3.
Since GS , 1, now Reh is smaller than one. As a con-

sequence, there is additional partition due to the possibil-
ity of normal reflection at the dot-superconductor contact.
The partition noise discussed above, from electrons being
either Andreev reflected or normally reflected (without
reaching the dot-superconductor contact), is thus reduced
to 2P0Reh�g. However, the additional normal reflection
at the dot-superconductor contact gives rise to a noise term
2P0Reh�1 2 Reh��g, with opposite sign [together they
give Eq. (9)]. For Reh , 1�2, the second term is domi-
nating, giving positive correlations.

Interestingly, in the absence of a proximity effect in
the dot, we find in the same way that the correlation for
g ¿ 1 is also given by Eq. (9). The proximity effect thus
plays no role when the quasiparticles undergo at most one
Andreev reflection. In this limit it is possible to explain
the positive correlations by particle counting arguments.
We note that an Andreev reflection leads to a simultane-
ous injection of a pair of particles (electrons or holes) into
the dot. Each particle of the pair has an independent prob-
ability 1�2 to go into each normal reservoir (no backre-
flection to the superconductor due to the weak coupling).
Assuming uncorrelated attempts of the pairs to enter the
dot gives the probability for Q1 (Q2) particles to end up
in reservoir 1 (2) when Qp pairs try to enter. From this
probability one directly obtains �P12� ~ Reh�1 2 2Reh�,
as in Eq. (9). This shows that, for a weak coupling to
the superconductor, nonperfect Andreev reflection at the
normal-superconductor interface together with indepen-
dent partitioning of particles inside the dot give rise to
positive correlations.

Finally, we note that the effect of normal backscattering
in the contacts between the dot and the normal reservoirs
is to enhance the positive correlations for a dominating
coupling to the superconducting reservoir. In the limit with
tunnel barriers in all contacts, the transmission eigenvalue
density is known analytically [14] and the correlation �P12�
follows from Eq. (6) [18]:

�P12�
P0GN

�
ḡ

�1 1 ḡ2�3�2

µ
1 2 5

ḡ2

�1 1 ḡ2�2

∂
, (10)

where ḡ � 2NGN��MGS�. The correlations are thus
positive for ḡ , �

p
5 2 1��2 and ḡ . �

p
5 1 1��2, and

negative for intermediate values.
In conclusion, we have studied the current cross cor-

relations in a three-terminal superconducting-chaotic dot
046601-4
analog of the Hanbury Brown–Twiss interferometer. We
find that the correlations are positive for a wide range of
junction parameters, and survive even in the absence of a
proximity effect in the dot. The magnitude of the posi-
tive correlations is large, proportional to the number of
transport modes in the contacts to the dot, which should
simplify an experimental observation.

We acknowledge discussions with C. W. J. Beenakker,
W. Belzig, E. Sukhorukov, H. Schomerus, and G.
Johansson. The work was supported by the Swiss Na-
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Note added.—In the final stages of this work we became
aware of the work of Boerlin et al. [19] who investigate a
three-terminal junction in the tunnel limit. In this limit,
our results coincide.
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