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Charge-Induced Anisotropic Distortions of Semiconducting and Metallic Carbon Nanotubes
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To accommodate extra electrons or holes injected into a single-wall carbon nanotube, carbon-carbon
bonds adjust their lengths. Resulting changes in carbon-nanotube length as a function of charge injection
provide the basis for electromechanical actuators. We show that a key mechanism at low injection levels,
modulation of electron kinetic energy, provides nanotube deformations that are both anisotropic and
strongly dependent on nanotube structure. Nanotubes can exhibit both expansion and contraction, as
well as nonmonotonic size changes. The magnitude of the actuation response of semiconducting carbon
nanotubes may be substantially larger than that of graphite.
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Carbon nanotubes are particularly interesting nano-
scopic systems [1] whose electronic and mechanical prop-
erties have been the subject of numerous studies and are
attractive for diverse applications [2,3]. One of the pro-
posals is to use carbon single-wall nanotubes (SWNTSs) as
electrochemically driven electromechanical actuators. In
these demonstrated devices, large electrochemical charge
injection can result from the high surface area of nanotube
assemblies [4]. The charge injection produces the electro-
mechanical actuation. Actuator strains of above 1% have
been observed [3], which is about 10 times that of ferro-
electrics. This high strain indicates the potential for ob-
taining order of magnitude advantages over any prior-art
actuator technologies for directly converting electrical en-
ergy to mechanical energy. Currently available nanotube
sheets and long fibers comprise bundles of SWNTs, each
bundle containing from 30 to 100 of SWNTs of various
internal geometries, or chiral vectors (N,M) [1]: from
zigzag (N,0) to armchair (N,N) tubes. The observed
actuation is likely to be an average from different SWNTs.
Improved synthetic methods are expected to eventually
make it possible to use SWNTs of selected types in actua-
tors [5]. The purpose of this Letter is to predict the actua-
tor strains that would result for different types of SWNTs
by studying a simplified electron-lattice model. Since
Coulombic effects are ignored in this model, our results are
restricted to low charge injection levels. We demonstrate
that SWNTs exhibit quite a unique picture of electro-
mechanical actuation that strongly depends on (N, M). The
magnitude of the actuator response of individual carbon
nanotubes can be appreciably larger than that of graphite,
presenting an exciting opportunity of enhanced actuation.

Suppose one adds 6 extra electrons per carbon atom to
a SWNT. How would interatomic distances be affected?
Here we study the contribution to bond length changes
arising from the modulation of electron hopping integrals ¢
by lattice distortions. The basic illustration is very simple:
if an extra electron or hole is added to a half-filled two-site
system, this would cause an expansion of the intersite bond
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by 6d = a/K, where K is the elastic constant and the
hopping integral is modulated as 6t = —add [6]. We
show that manifestations of this relaxation mechanism can
produce surprisingly different overall dimensional changes
for carbon nanotubes having different values of N and M.

An important issue is the relationship of effects due to
electron (6n > 0) versus hole (6n < 0) doping. Addition
of electrons or holes to a half-filled system with charge
conjugation symmetry (CCS) would result in the same di-
mensional changes: the response is an even function of dn.
The two-site system possesses CCS. Tight binding models
of graphite and carbon nanotubes in the nearest neighbor
hopping (NNH) approximation are also CC symmetric. On
the other hand, experiments show [4] that the dimensional
effect can change its sign with 6n at small éx. To allow for
such a CCS breaking, we explicitly consider second order
hopping (SOH) (e.g., [7]), with electronic energy bands
acquiring the form

e (k) = 7(k) = (k) (1)

for the conduction and valence bands, respectively. & (l:c)
originates from the NNH between carbon atoms and 7(k)
from the SOH. We assume that electrons/holes added to
the system are accommodated in the band states of the
lowest available excitation energies [8]. The dimensional
effects then appear as a result of variation of the band
parameters by the lattice displacements.

The lattice distortions in this Letter are restricted to
uniform length modulations of the three types of bonds
(denoted d,, dp, and d..) , as shown in Fig. 1. Correspond-
ingly, there are three types of NNH integrals: z,, tp, ?,
and three types of SOH integrals: 1, 2, and 3. The cou-
pling constant « describes the modulation of NNH, e.g.,
t, =1 — add, [11]; the corresponding constant for SOH
is denoted B (8/a ~ 0.1). Anisotropic distortions play an
important role in nanotubes. This was first recognized by
Kane and Mele [12] who showed how anisotropic fluctu-
ations introduce a symmetry breaking and serve as strong
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FIG. 1. Four carbon atoms of the repeating motif are depicted
with the three types of bonds d,, d;, and d, and the correspond-
ing NNH and SOH integrals. Also shown is the nanotube axis
at the angle ¢ with the x axis.

scatterers of quantum particles. We explicitly define the
isotropic mode S and two anisotropic modes A; and A, so
that individual bond length changes are expressed as

((—add, = S/3 — A1/2J3 — Ay)2,
—addy, = S/3 + A1/\3, 2
—add. = S/3 — A1/2/3 + Ay)2.

To gain physical insight into the problem, let us turn
attention to not too small nanotubes. Then the low exci-
tation energy region is close to special points in the mo-
mentum space, where the gap of the (isotropic) graphene
spectrum vanishes [1,12], and one can use expansions of
the exact band energies. For certainty, we choose the
special point K = (477/3,0) and measure all momenta
k = (ky, ky) from that point. The resulting expansions (7o
is the equilibrium value of 7) are

(k) = mo(k) + V3(B/a)[S + 3(kA; + k,Az)/4],
3)
E2(k) = (3 + 25 — 2v/3A)) (k, — A))%/4
+ (3 + 25 + 2v3A)) (ky — Ay)?/4
+ V3Ayk, — A)(ky, — Ay). 0))

For the (N, M) tube, the chiral angle ¢ (Fig. 1) is de-
fined through singp = (N — M)/2C},, where the tube cir-
cumference C;, = (N2 + M? + NM)"2. We consider 1)
belonging to the interval between 0 (armchair tubes) and
7 /6 (zigzag tubes). Of extreme importance is the divisi-
bility of N — M by 3; the “remainder” ¢ = 0, *1 is in-
troduced by

N —-M=3m+ ¢, ®))

where m is the appropriate integer. The electron mo-
menta can lie only on a set of quantization lines; the one
most closely approaching the special point is described by
kysing + kycos¢p = —2arq/3C; = Ky. The lowest &
energy in the equilibrium system is & = (3Kj/4)'/? =
7|ql/~/3 Cy, finite for semiconducting nanotubes (|g| =
1) and zero for metallic ones (¢ = 0).

The new configuration of the doped system is obtained
by minimizing the variable part of the total adiabatic en-
ergy per carbon atom: U = E¢ + Ujy. For simplicity,
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here we consider only one nearest neighbor elastic con-
stant K so that the lattice energy reads Uy, = K[S?/3 +
(A|2| + A%)/2]/4a?, where distortions A; and A are re-
placed with their projections on axes parallel (Aj) and per-
pendicular (A ) to the quantization lines:

A = Ajcos¢p — Aysing,
A} = A;sing + Aycosd.

The electronic part of the energy is taken as
Sk
Ea = V3(B/a)Son + (/) | = €W dk, ()

where only one practically non-negligible term from (3) is
left. The coefficient f relates the boundary Sk of the occu-
pied states in the momentum space to the charge injection
level: 8k = f|8n|, f = wCy/~/3 (with account of band
degeneracy).

The interesting physics occurs in the NNH part. One-
dimensional (momentum k) “¢ bands” along the quantiza-
tion lines are obtained from (4) and have the familiar Dirac
form

(k) = A% + vjik’, @
where the gap parameter
A=vi|Ky— ALl ®)

and the effective Fermi velocities
v =vrp — A/2, v, =vp +A/2. 9)

Here vr =+/3/2+ §/2J/3 and A = Ajcos3¢ +
A sin3¢. Equations (8) and (9) illustrate a significant
difference between the effects of the isotropic and aniso-
tropic distortions. The major effect from the anisotropic
modes is the displacement of the special point [12,13], or
modulation of the gap by A . There is also an effect from
modulation of v, in (8) by all modes, but it is proportional
to a small quantity Ky. Anisotropic modes actually split
the Fermi velocity into v, and vy (9) which leads to an
additional interplay of the effects upon increase of the
injection level.

The experimentally observed macroscopic changes can
be found from the definition (2) and Fig. 1. So for the
relative changes of the tube length §L/L = | and radius
SR/R = vy, one obtains

—(ad)y|L = S/3 F A/2V/3. (10)

As an instructive example, we first analyze the effects
linear in &n. Then the integral in (6) reduces to A|Sn|
and one easily finds optimal distortions that, when put into
(10), lead to simple expressions:

(v = (a/Kd)[2v3 B/«
y1 = (a/Kd)[2V/3 B/a
*gsin3¢1on,

q sin3¢]6ﬁ,
4mlql/3v/3C,  (11)

T
+

where upper/lower signs correspond to electron/hole
doping. A notable feature of Egs. (11) are the terms
proportional to the factor ¢ = 0, =1 (5) which leads to
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responses oscillating as a function of N — M. This is
reflected in Fig. 2 (that figure also displays some other
effects described below; representative numerical parame-
ters used are a/Kd = 0.2 and B/a = 0.1). The large
scale anisotropy of the response is clear from comparing
the panels. The found oscillatory dependence of actuator
strain is consistent with the picture of the band gap mod-
ulation described recently for deformed nanotubes [14].
The second order effect (« ) leads to a plain shift of the
“zero line” and to CCS breaking between electron and
hole doping. For metallic systems with g = 0, this term
may be dominating. The leading response from the NNH
in that case is « &n? as arising from the modulation of vy
in (9). This brings an additional term (a/Kd)f&n>//3
into vy in (11). So for the (10, 10) tube at n = 0.01, the
latter quadratic term is about half of the contribution from
the SOH.

The systems above had purely spontaneous anisotropy
induced by the interaction of extra charges with the lat-
tice. In reality, the undoped system itself can already
be anisotropic. An important source of such “external”
anisotropy is the curvature of nanotubes. An elegant analy-
sis of the curvature effects was, e.g., given by Kane and
Mele [12]. Curvature induced anisotropy is described the
same way as anisotropic modes: one needs to replace
A — A + A,sin3¢p, A — A + A, cos3¢ in Egs. (8)
and (9) (but not in the elastic energy). From Ref. [12]
we deduce the value A, = —2/4/3 C7. Appearance

0.4
i o
S 02F ; & ,g\ I
| [ N N P
~ o 8-s \g/ /) ﬁ‘\ ) Q\ L]
LB' OO? 44444444444444444444444444444 \g ........... ‘gj 44444444444 \.\..Il 444444 1
I W
-0.21L .
0 5 10 15
N-M (M Z0)
0.4 i
I & ]
‘g 02F g /g\ // \‘ 4
* : »m~ /§ // \ ! \\ ! ! :
~ P d-a \E’N od o @’ L
x O'O A Q‘/‘ .......... L PR S 1
© i i b
-0.21L .
0 5 10 15
N-M (M 2 0)

FIG. 2. Reduced dimensional distortions (10) for the electron
doping level 6n = 0.005. Shown are results for four “families”
of carbon nanotubes: with N = 11 (crosses), 12 (diamonds), 13
(triangles), and 14 (squares). Connected with broken lines are
the square data points. The upper panel shows changes in the
nanotube length, and the lower changes in nanotube radius.
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of a small gap « A, drastically changes the response of
quasimetallic nanotubes for very low doping levels. How-
ever, the role of a small gap quickly diminishes upon an
increase of the doping level. So Fig. 2 displays effects (10)
with optimal distortions found by numerical minimization
of o U for the electron doping level o0n = 0.5%. The figure
shows not only the linear effects (11) but also the interplay
of effects coming from the curvature and from the filling
of the electron states above the band edge.

A further increase of the injection level leads to charges
starting to fill in the higher lying energy bands. The lowest
critical densities are found as Snye; = 2+/3 / Ci, ONlgem =
2/C#. This yields, e.g., dnmet = 1.2% for the (10,10)
nanotube, and Sngem = 1.7% for the (11,0) nanotube.
Onset of the filling leads to sudden changes in the re-
sponses —obviously, a distortion A | that decreases the gap
for the first band (say, with ¢ = 1) would increase the gap
for the second band (with ¢ = —2). “Conflict of interests”
of different bands is studied with the single band integral in
Eq. (6) replaced with >, [ g “ ¢,(k) dk over multiple bands
i with appropriate boundaries dk;. In Fig. 3 we show cal-
culated 7| for a series of carbon nanotubes as a function
of the injection level. Sharp changes in the responses are
clearly seen for the tubes (16,0) and (17,0). Within the
same model, the dimensional response of graphite would
be a smooth curve y| = y, = (a/Kd)[2v/3(B/a)én +
m8n?/3]. The nanotube strains caused by charge injec-
tion fluctuate around the graphite curve, exhibiting the de-
scribed sharp transitions. The amplitude of the fluctuations
and the spacing between them decrease with the size of the
nanotubes, gradually approaching the graphite response as
N,M — .

In graphite, it is only the isotropic mode that gets
excited upon charge injection leading to the isotropic
expansion/contraction of the lattice. The quantization of
electronic states in nanotubes makes anisotropic distor-
tion modes a prominent feature of the accommodating
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FIG. 3. Longitudinal dimensional changes for a series of elec-
tron doped nanotubes as a function of the injection level. Crosses
are for the (10, 0) zigzag tube, diamonds for the (11, 0) tube, tri-
angles for the (16,0) tube, squares for the (17,0) tube, and x’s
for the (10, 10) armchair tube. Lines here just connect the cal-
culated data points.
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lattice relaxation [15], especially so for semiconducting
nanotubes. Equations (11) and data in Fig. 2 suggest that
individual nanotubes can exhibit actuations larger by a
factor of 3—4 than the graphite response. However, an
oscillatory dependence on N — M probably makes the
observation of the larger effects difficult. For a bundle
of nanotubes of various geometries, experiments [4] are
likely to show some average, with larger strains from
semiconducting tubes “compensating” each other. Sepa-
ration of semiconducting nanotubes of the optimal type
is therefore required to make the predicted enhancement
practically useful. Proper selection of single nanotubes
having large expansion coefficients would enable response
optimization for nanoscale actuators.

Superimposed on the discussed effects can be a uniform
expansion « 8n? coming from the Coulomb repulsion of
extra charges, whose magnitude depends on the position-
ing of counterions and dielectric properties of the medium.
Coulombic intratube repulsion will likely dominate actua-
tion when charge injected is large. The band structure ef-
fect will dominate either for low degrees of injected charge
or where extra electrons and holes are introduced as a re-
sult of photoexcitation. Our results are relevant in such
a system if extra charges quickly relax to the band edges
and spend some time there. It should be reiterated that
this Letter establishes only low temperature behavior in
the single-electron picture. Evaluation of the effects of
temperature [16] and e-e interactions [13] requires further
studies.

In conclusion, we argued that SWNTs can display fasci-
nating dimensional behavior as a result of lattice relaxation
to accommodate extra electrons/holes at low injection lev-
els. Large anisotropy in dimensional changes is predicted,
possibly leading in some cases to decreasing diameter and
increasing length upon charge injection. The oscillatory
dependence of actuator strain on nanotube geometry is a
dramatic predicted effect. For the same sign of carrier in-
jection, some tubes may experience a longitudinal expan-
sion, while others a contraction. Moreover, the electronic
band structure of the nanotubes can reveal itself through
sharp changes of the actuation response upon changing the
doping level. Particularly strong dimensional changes are
expected from semiconducting zigzag tubes, which may
be substantially larger than the response of graphite.

This work was supported by DARPA Grant
No. MDA972-02-C-005.

Note added.—AD initio calculations on zigzag and arm-
chair SWNTs (Ref. [17] and to be published) show that the
strain as a function of charge per carbon approaches that of
graphene for large radii. The deviations from the graphene
behavior are found largest for semiconducting tubes with
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small radii, in agreement with the theory presented here.
A detailed comparison of the results is underway and will
be published elsewhere.
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