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Zero-Temperature Equation of State of Two-Dimensional 3He
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The equation of state of two-dimensional 3He at zero temperature has been calculated using the diffu-
sion Monte Carlo method. By means of a combination of the fixed-node and released-node techniques,
it is shown that backflow correlations provide a very accurate equation of state. The results prove unam-
biguously the non-self-bound character of two-dimensional 3He due to its Fermi statistics. We present
solid evidence that the gas phase, predicted for the two-dimensional system, can be extrapolated to the
case of 3He adsorbed on a strong substrate such as graphite.
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3He adsorbed on strongly interacting substrates such as
graphite, or on top of bulk 4He or 4He films, constitute
experimental realizations of quasi-two-dimensional Fermi
systems. In the past few decades, there has been a con-
tinued experimental effort to unveil the fascinating proper-
ties of such a nearly perfect two-dimensional Fermi liquid.
Among these unique features, of particular relevance is
the possibility of continuously increasing the areal density
from an almost ideal gas behavior up to a strongly corre-
lated regime. This is the experimental situation observed,
for example, in the two first layers of 3He adsorbed on
graphite. These experimental findings indicate the nonex-
istence of a self-bound 3He system. In contrast, Csáthy
et al. [1] have recently studied submonolayer 3He-4He
mixture films on H2 and claim that 3He atoms appear to
have condensed into a 2D self-bound liquid. Also, a recent
theoretical study of mixture films points out the possibility
of a dimerized 3He phase in a strictly 2D geometry [2]. In
fact, the question of a self-bound 2D 3He phase has been
discussed for a long time both from experimental [3–6]
and theoretical perspectives [7–11].

Theoretical calculations concerning the 2D 3He system
and the 3He films are scarce in comparison with the cor-
responding ones for the boson isotope 4He. In addition to
dealing with a strongly correlated system such as helium,
the Fermi statistics of 3He must be taken into account.
In one of the pioneering works of the field, Novaco and
Campbell [7] calculated the equation of state of 3He ad-
sorbed on graphite. Using lowest-order Fermi corrections,
they concluded that the 3He film is in a gas state, contrary
to 4He which exhibits a well-established self-bound char-
acter [12,13]. A comparative study of bosons and fermions
in 2D was performed by Miller and Nosanow [8] using the
variational method. According to their approach, and us-
ing a Wu-Feenberg expansion [14] at lowest order, 3He
cannot condense in 2D. More recently, Brami et al. [9]
calculated the properties of a 2D 3He film using variational
Monte Carlo (VMC). They concluded that the presence of
a transverse degree of freedom, not present in two dimen-
sions, allows the system to gain enough additional bind-
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ing energy to guarantee a liquid phase with a very small
energy. However, a recent Green’s function Monte Carlo
(GFMC) calculation by Whitlock et al. [15], of a 4He film
adsorbed on graphite, has shown that the energy gain with
respect to the ideal 2D system is much smaller than the
one estimated in Ref. [9].

In this work, we use the diffusion Monte Carlo (DMC)
method, which for bulk 3He has produced, for the first
time, close quantitative agreement between theoretical and
experimental results for the equation of state [16]. Our
aim is to achieve the same accuracy in the present study
of a strictly 2D 3He fluid. The energies obtained consti-
tute upper bounds to the eigenvalues of the many-body
Schrödinger equation, but the method can measure the
quality of the bounds and provide a means of improving
them. The results presented in this work show that back-
flow correlations are sufficient to bring the systematic error
to the level of the statistical noise. The resulting equation
of state implies the nonexistence of self-binding, in agree-
ment with most experimental observations.

DMC [17] is a stochastic method that solves the N-body
imaginary-time Schrödinger equation for the wave func-
tion f�R, t� � c�R�C�R, t�, with c�R� a trial wave func-
tion used for importance sampling (see Ref. [18] for a
more detailed description of the actual DMC algorithm
used). The first and simplest approximation for the trial
wave function c is the Jastrow-Slater form,

cF � cJD
"D#, (1)

with a Jastrow factor cJ �
QN

i,j exp�u�rij�� accounting
for the dynamical correlations induced by the interatomic
potential, and D" (D#) a plane-wave Slater determinant for
the spin-up (spin-down) atoms.

The nodal surface provided by cF corresponds to the 2D
free Fermi gas. This is a first approximation since the real
nodal surface is modified by dynamical correlations. This
influence is contained in the time-dependent Schrödinger
equation. Starting with cF as zeroth order, a straight-
forward calculation shows that the first order correction
to the wave function incorporates the so-called backflow
© 2002 The American Physical Society 045301-1
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correlations (BF), a name used in analogy to the same type
of corrections introduced by Feynman and Cohen [19] in
their famous paper on the 4He phonon-roton spectrum. In
this new wave function cBF the arguments of the orbitals
wa�i� entering D" and D# are shifted under the influence
of the medium,

exp�ika ? r̃i� � exp

Ω
ika ?

µ
ri 1 lB

NX
jfii

h�rij�rij

∂æ
.

(2)

The two-body correlation factor is of McMillan type,
u�r� � 20.5�b�r�5, and the backflow function is approxi-
mated by a Gaussian, h�r� � exp�2��r 2 rB��vB�2�.
The parameters of c have been optimized using VMC; the
optimal values are b � 1.16s, lB � 0.40, rB � 0.75s,
and vB � 0.54s (s � 2.556 Å). The density depen-
dence of this set of parameters in the region studied
here is very weak and can be neglected. The interatomic
interaction corresponds to the HFD-B(HE) potential from
Aziz et al. [20]; its use in bulk 4He [18] and 3He [16] has
allowed for a very accurate calculation of their respective
equations of state.

The upper bound to the energy provided by the fixed-
node (FN) approximation depends on the accuracy of the
nodal surface of c�R�; if it is the exact, one then FN
generates the eigenvalue. Otherwise, FN yields a varia-
tional estimate of the energy of the system, but provides no
indication of the accuracy of this estimate. In a preceding
work on bulk 3He [16], we devised a combined method that
incorporates FN, the released-node (RN) method, and an
analytical prescription to improve c�R�. The RN method
does not generally yield the exact energy, due to the growth
of the boson component, but the initial slope of the en-
ergy vs the released time is readily accessible. From this
slope, one can guess the difference between the FN en-
ergy and the eigenvalue; an exact wave function gener-
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FIG. 1. RN energies as a function of the released time tr.
Empty and filled circles stand for cF and cBF as trial wave
functions, respectively. Solid lines are linear fits to the calcu-
lated data.
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ates zero slope. In Fig. 1, RN results at medium density
(r � 0.10s22) are shown for the two trial wave functions
cF and cBF reported above. The decrease of the energy
going from cF to cBF is 	0.01 K, a small figure in ab-
solute value but of the same relative magnitude as in bulk.
More importantly, the RN energies shown in Fig. 1 illus-
trate the different behavior of E�N with the released time
tr: the cF results show a linear decreasing trend which dis-
appears when backflow correlations are introduced. In fact,
a fit to the slope of E�N�cBF� gives a value compatible
with zero. This remarkable result can be combined with
an estimation of the released time from E�N�cF� which
indicates that the systematic error of the BF energies due
to the nodal surface is in the mK order of magnitude, i.e., it
has been brought to the level of the typical statistical errors
of this work. Additional insight on the high quality of the
nodal surface provided by the inclusion of backflow cor-
relations is reached by incorporating in c the next-order
analytical terms [16]. The results obtained with the new
c, which includes explicit three-body correlations in the
backflow operator, do not show any improvements with
respect to the BF energies. Therefore, the DMC results
obtained for 2D 3He, using the optimized backflow corre-
lations, are essentially exact; it is worth noticing that the
same method gives unprecedented accuracy in the calcula-
tion of the bulk 3He equation of state.

Results for the total and partial energies of the 2D 3He
system as a function of the surface density are reported
in Table I. The potential energies per particle have been
obtained using a pure estimation method [21] in order to
avoid any biases coming from the trial wave function. The
kinetic energy comes from the difference between the total
and the potential energies. All the calculations have been
carried out with 90 atoms, the finite-size simulation effects
having been corrected for, and in practice eliminated, by
summing up energy-tail contributions coming from both
the dynamical and statistical parts. The final DMC ener-
gies are positive for any density and result from a signifi-
cant cancellation between T�N and V�N , a usual feature
in condensed helium. The last column in Table I contains
the decrease of the energy when the nodal surface is im-
proved by the inclusion of backflow correlations. As could
be expected, DE�N increases with r as does the relevance
of correlations.

TABLE I. DMC total and partial energies (in K) of 2D 3He.
The last column shows the upper bound �E�N�F, relative to
the DMC energies (column 1). Figures in parentheses are the
statistical errors.

r�s22� E�N T�N V�N DE�N

0.01 0.0262(4) 0.0884(11) 20.0622�11� 0.003
0.06 0.0971(26) 0.6678(30) 20.5707�30� 0.003
0.10 0.1244(18) 1.2015(70) 21.0771�70� 0.008
0.17 0.2204(22) 2.4329(87) 22.2125�87� 0.012
0.23 0.3939(22) 3.7414(87) 23.3475�87� 0.038
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The equation of state of 2D 3He is shown in Fig. 2 for
the range of densities studied. In this region, our results
are well parametrized by a cubic polynomial (solid line),

�E�N� � r� � ar 1 br2 1 cr3, (3)

with optimal parameters a � 2.376�74� Ks2, b �
216.87�81� Ks4, and c � 0.608�21� 3 102 Ks6. At
very small densities (r & 0.05s22), the energy grows
linearly as in a free Fermi gas [EF�N � h̄2��2m�pr] but
with different slope. At medium densities, there is a clear
change in the slope with a flatter region suggesting the
emergence of a minimum. Nevertheless, this minimum
does not appear and the energy remains always positive.
For r * 0.25s22, the energy increases much faster as
the density approaches the freezing point, which experi-
mentally is observed at r 
 0.394s22 [5].

The Fermi statistics of 3He atoms is the key point un-
derlying the non-self-bound character of 2D 3He. This
conclusion is drawn from the comparison between the real
system and a fictitious 2D 3He boson system. In Fig. 3,
the DMC equation of state of both systems is compared.
Boson 3He would show a liquid phase with a binding en-
ergy �E�N�0 � 20.1189�23� K at an equilibrium density
r0 � 0.1311�17�s22. The lighter mass of the 3He atom
is responsible for the large reduction of binding energy of
boson 3He with respect to liquid 4He: Using the same po-
tential, the 4He equilibrium point is (0.284s22, 20.897 K)
[13]. Some previous theoretical calculations on 2D 3He
used the boson model as a reference system [7,8]. On
top of this, dominant Fermi corrections were added to in-
troduce the correct statistics. This perturbative approach,
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FIG. 2. Energy per particle of 2D 3He as a function of the
density. The statistical error bars are smaller than the size of the
symbols. The solid line corresponds to a third-degree polyno-
mial fit (3) to the DMC data.
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known as Wu-Feenberg expansion [14], starts at zeroth or-
der by simply adding EF�N to the boson energy. This
crude estimation is plotted in Fig. 3. As one can see,
the kinetic term EF�N leads to a large overestimation of
E�N , and only for r , 0.03s22 can it be considered a
reasonable approximation. The successive terms in the
Wu-Feenberg series show a nonmonotonic behavior and,
in general, a very slow convergence: At medium den-
sities (r 
 0.1s22) the next-order term is negative and
approximately 100 times smaller than the zeroth order
[11]. Therefore, although the present results modify quan-
titatively those approximate calculations, previous conclu-
sions about the gaslike character of 3He are not altered.

Relevant quantities from the experimental standpoint
are the density dependence of the pressure P�r� and the
speed of sound c� r�. Both functions are shown in Fig. 4.
They have been obtained from the polynomial fit to the
DMC energies (3) through the thermodynamic relations
P� r� � r2�d�E�N��dr� and c� r� � �m21�dP�dr��1�2.
The pressure remains very low up to r 
 0.20s22, and
from then on increases much faster due to the small 3He
mass and the rapid decrease with density of the mean dis-
tance between particles, due to the reduced dimensional-
ity. An approximate estimate for the latter comes from
2�4pr�21�2; at r � 0.25s22 it amounts to only 2.88 Å,
a smaller value than in bulk 3He at freezing, 4.32 Å. The
speed of sound presents three different regimes as a func-
tion of r. At very small densities, c� r� increases approxi-
mately like r1�2 as it would correspond to a free 2D Fermi
gas. Then, c� r� reaches a plateau up to r 
 0.08s22.
In this region, the speed of sound increases although the
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FIG. 3. Influence of the Fermi statistics on the energy of 2D
3He. Filled and empty circles correspond to Fermi and Bose 3He,
respectively. Squares represent the sum of the boson energy and
the Fermi gas kinetic energy. The lines are polynomial fits to
the data.
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FIG. 4. Density dependence of the pressure and speed of sound
of 2D 3He.

slope is very small; this behavior is a direct consequence
of the flattening exhibited by the energy for the same range
of densities (see Fig. 2). Finally, in the third regime, c� r�
again increases with r in a more common way.

The 2D system constitutes a model for a film adsorbed
on a strong substrate such as graphite. A question that
naturally emerges is to what extent the presence of a trans-
verse degree of freedom would modify the 3He proper-
ties. First, the nodal surface could be different from the
one of the 2D system. However, a key result of this work
in 2D, and the previous one in 3D [16], is that the real
nodal surface in both cases is essentially given by back-
flow effects. In a film, the particle-particle backflow cor-
relations would be mainly contained in the surface plane.
Furthermore, both the not-in-plane contributions and the
particle-substrate correlations, being perpendicular to the
surface plane, should have a small effect on the backflow
wave function. Therefore, the Fermi statistics of a thin
3He film can be safely considered within the idealized 2D
geometry. Second, the additional degree of freedom per-
pendicular to the substrate could by itself lower the energy
in an amount large enough to allow for the existence of
a liquid phase. In fact, a VMC calculation of 3He and
4He films adsorbed on graphite by Brami et al. [9] con-
cludes for the former the existence of a self-bound system
with a binding energy of 	200 mK at an equilibrium den-
sity 	0.131s22. To our knowledge, there are not DMC
or GFMC calculations of 3He films on graphite that can
confirm that variational prediction. However, Whitlock et
al. [15] performed GFMC calculations for 4He films ad-
sorbed on the same substrate, and found a decrease in en-
ergy with respect to 2D that is much smaller than the results
from Ref. [9]. Even at the variational level, and using the
same wave function and graphite-helium potential, Whit-
lock et al. [15] were not able to reproduce the 4He energy
reported in Ref. [9] (20.7 vs 21.9 K).
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The order of magnitude of the shift in energy that ap-
pears in a 3He film with respect to the 2D system can
be estimated from the GFMC results for the 4He liq-
uid [15], taking into account the different mass of the
two isotopes in the approximate kinetic-energy correc-
tion. For example, at densities r � 0.065s22, 0.131s22,
and 0.170s22, the energy shifts are DE�N � 20.005,
20.022, and 20.037 K, to be compared with the 2D en-
ergies E�N � 0.100, 0.159, and 0.220 K, respectively.
Therefore, the energy shift is by far too small to change
the conclusion that, similar to the strictly 2D fluid, a thin
3He film is not self-bound.
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