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We study the competing effects of stimulated and spontaneous emission on the information capacity
of an amplifying disordered waveguide. At the laser threshold the capacity reaches a “universal” limit,
independent of the degree of disorder. Whether or not this limit is larger or smaller than the capacity
without amplification depends on the disorder, as well as on the input power. Explicit expressions are
obtained for heterodyne detection of coherent states, and generalized for an arbitrary detection scheme.
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To faithfully transmit information through a communi-
cation channel, the rate of transmission should be less than
the capacity of the channel [1,2]. Although current tech-
nology is still far from the quantum limit, there is an active
scientific interest in the fundamental limitations to the ca-
pacity imposed by quantum mechanics [3,4]. Ultimately,
these limitations originate from the uncertainty principle,
which is the source of noise that remains when all external
sources have been eliminated.

An important line of investigation deals with strategies
to increase the capacity. One remarkable finding of re-
cent years has been the beneficial role of multiple scat-
tering by disorder, which under some circumstances can
increase the capacity by increasing the number of modes
that effectively carry the information [5,6]. Quite gener-
ally, the capacity increases with increasing signal-to-noise
ratio, so that amplification of the signal is a practical way
to increase the capacity. When considering the quantum
limits, however, one should include not only the amplifi-
cation of the signal (e.g., by stimulated emission), but also
the excess noise (e.g., due to spontaneous emission). The
two are linked at a fundamental level by the fluctuation-
dissipation theorem, which constrains the beneficial effect
of amplification on the capacity [7].

While the effects of disorder and amplification on com-
munication rates have been considered separately in the
past, their combined effects are still an open problem.
Even the basic question, “Does the capacity go up or down
with increasing gain?”, has not been answered. We were
motivated to look into this problem by the recent interest
in so-called “random lasers” [8,9]. These are optical me-
dia with gain, in which the feedback is provided by disor-
der instead of by mirrors. Below the laser threshold, these
materials behave similar to linear amplifiers with strong in-
termode scattering, and this results in some unusual noise
properties [10,11]. As we will show here, the techniques
developed in connection with random lasers can be used to
predict under what circumstances the capacity is increased
by amplification.

We consider the transmission of information through a
linear amplifier consisting of an N-mode waveguide that
is pumped uniformly over a length L (see Fig. 1). We will
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refer to amplification by stimulated emission, but one can
equally well assume other gain mechanisms (for example,
stimulated Raman scattering [12]). The amplification oc-
curs at a rate 1�ta. The waveguide also contains passive
scatterers, with a transport mean-free path l. The com-
bined effects of scattering and amplification are described
by a 2N 3 2N scattering matrix S which is superunitary
(SSy 2 ' positive definite).

We assume that the information itself is of a classical na-
ture (without entanglement of subsequent inputs), but fully
account for the quantum nature of the electromagnetic field
that carries the information. The quantized radiation is de-
scribed by a vector ain of bosonic annihilation operators
for the incoming modes and a vector aout for the outgoing
modes. The two vectors are related by the input-output re-
lation [10,13,14]

aout � Sain 1 Uby. (1)

The vector of bosonic creation operators by describes
spontaneous emission by the amplifying medium. The
fluctuation-dissipation theorem relates U to S by

UUy � SSy 2 ' . (2)

The first communication channel that we examine is
heterodyne detection of coherent states [3]. The sender
uses a single narrow-band mode a (with frequency v0

and bandwidth Dv), to transmit a complex number m by
means of a coherent state jm� (such that ain

a jm� � mjm�).
The receiver measures a complex number n by means of
heterodyne detection of mode b. Two sources of noise
may cause n to differ from m: spontaneous emission by
the amplifying medium, and nonorthogonality of the two
coherent states jm� and jn�, described by the overlap

j�m jn�j2 � p21 exp�2jm 2 nj2� . (3)

sender receiverL

FIG. 1. Communication channel consisting of an N-mode
waveguide that is amplifying over a length L. Both sender and
receiver use a single narrow-band mode (indicated by a plane
wave).
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The a priori probability p�m� that the sender transmits
the number m, and the conditional probability P �n jm�
that the receiver detects n if m is transmitted, determine
the mutual information [3],

I �
Z

d2n
Z

d2mP �n jm�p�m� log2

µ
P �n jm�

p̃�n�

∂
. (4)

We have defined p̃�n� �
R

d2mP �n jm�p�m�. The chan-
nel capacity C (in bits per use) is obtained by maxi-
mizing I over the a priori distribution p�m�, under the
constraint of fixed input power P � P0

R
d2mjmj2p�m�

(with P0 � h̄v0Dv�2p). As argued in Ref. [15], any
randomness in the scattering medium that is known to the
receiver but not to the sender can be incorporated by aver-
aging I before maximizing; hence,

C � max
p�m�

�I� . (5)

The brackets �· · ·� indicate an average over different posi-
tions of the scatterers.

The calculation of the capacity is greatly simplified by
the fact that the spontaneous emission noise is a Gaussian
superposition of coherent states. This is expressed by the
density matrix of the amplifying medium,

rmedium ~
Z

d2 �b exp�2j �bj2�f� j �b� � �bj , (6)

where �b is a vector of 2N complex numbers and j �b�
is the corresponding coherent state (such that bnj �b� �
bnj �b�). The variance f � Nupper�Nupper 2 Nlower�21 de-
pends on the degree of population inversion of the upper
and lower atomic levels that generate the stimulated emis-
sion. Minimal noise requires a complete population inver-
sion: Nlower � 0 ) f � 1. We consider that case.

We similarly assume that heterodyne detection adds the
minimal amount of noise to the signal. (This requires that
the image band is in the vacuum state [3].) The conditional
probability is then given by a projection,

P �n jm� � �njrout�m� jn� , (7)

of the density matrix rout�m� of the outgoing mode b onto
the coherent state jn� (for an incoming coherent state jm�
in mode a). In view of Eqs. (1) and (6), we have

rout�m� ~
Z

d2n0 exp

µ
2
jn0 2 Sbamj2P

n jUbnj2

∂
jn0� �n0j . (8)

This is again a Gaussian superposition of coherent states,
but now the variance is related by Eq. (2) to the scattering
matrix of the medium:

P
n jUbnj

2 �
P

n jSbnj
2 2 1.

Substituting rout into Eq. (7), and using Eq. (3), we
arrive at

P �n jm� ~ exp

µ
2
jn 2 Sbamj2P

n jSbnj2

∂
. (9)

This expression for the conditional probability has the
same Gaussian form as in previous studies [15,16] of com-
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munication channels degraded by Gaussian noise, but the
essential difference is that in our case the noise strength is
not independent of the transmitted power, but related to it
by the fluctuation-dissipation theorem (2).

The calculation of the capacity proceeds as in
Refs. [15,16]. The optimum a priori distribution p�m� ~

exp�2jmj2P0�P� is independent of the scattering matrix
S, so the maximization and disorder average in Eq. (5)
may be interchanged. The result is

C � �log2�1 1 R��, R �
�P�P0� jSbaj

2P2N
n�1 jSnj2

. (10)

The quantity R is the signal-to-noise ratio at the receiver’s
end. We can write R equivalently in terms of the transmis-
sion matrix t (from sender to receiver) and the reflection
matrix r (from receiver to receiver):

R �
�P�P0� jtbaj

2PN
n�1�jtbnj2 1 jrbnj2�

. (11)

In the absence of intermode scattering, one has jtnmj
2 �

dnm and rnm � 0; hence, R � dabP�P0 and C �
log2�1 1 dabP�P0�, independent of the amount of ampli-
fication. The increase in capacity by stimulated emission
is canceled by the extra noise from spontaneous emission
[7]. In the absence of amplification, but in the pres-
ence of scattering, one has

P
n jSbnj

2 � 1; hence, C �
�log2�1 1 jtbaj

2P�P0��. The capacity is reduced by
intermode scattering in the same way as for the lossy
channel studied in Ref. [17].

The average over the scatterers can be done analyti-
cally in the limit N ¿ 1 of a large number of modes in
the waveguide. Sample-to-sample fluctuations in the de-
nominator s �

P
n�jtbnj

2 1 jrbnj
2� are smaller than the

average by an order N , so these fluctuations may be ne-
glected and we can replace the denominator by its av-
erage s̄. The fluctuations in the numerator t � jtbaj

2

cannot be ignored. These are described (for N ¿ 1) by
the Rayleigh distribution P �t� � t̄21e2t�t̄. Integrating
log2�1 1 �P�P0�t�s̄� over t with distribution P �t�, we
arrive at

C � eR
21
eff G�0;R21

eff �� ln2, Reff �
Pt̄

P0s̄
, (12)

with G�0; x� the incomplete gamma function. The de-
pendence of the capacity C on the effective signal-to-
noise ratio Reff is plotted in Fig. 2. It lies always below
the capacity C0 � log2�1 1 Reff�, which one would ob-
tain by ignoring fluctuations in t. For Reff ø 1 the
two capacities approach each other, C � C0 � Reff� ln2,
while for Reff ¿ 1 one has C0 � log2Reff versus C �
log2Reff 2 g� ln2 (with g � 0.58 Euler’s constant).

The quantity Reff depends on three length scales [11]:
the length L of the amplifying region, the mean-free path
l, and the amplification length la �

p
Dta (with D the

diffusion constant). The two averages t̄, s̄ can be calcu-
lated from the diffusion equation in the regime l ø la, L.
There is a weak dependence on the mode indices a, b in
043902-2
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FIG. 2. Capacity C for heterodyne detection of coherent states
as a function of the signal-to-noise ratio Reff. The result (12)
lies below the value C0 � log2�1 1 Reff� that ignores statistical
fluctuations. Inset: Dependence of Reff on the relevant length
scales.

this diffusive regime, which we ignore. The result is

t̄ �
4l�3la

N sin�L�la�
,

s̄ � 1 1 �4l�3la�
1 2 cos�L�la�

sin�L�la�
.

(13)

The effective signal-to-noise ratio,

Reff �
P

NP0
�1 2 cos�L�la� 1 �3la�4l� sin�L�la��21,

(14)

is plotted in Fig. 2 (inset). Without amplification, for
la ¿ L, one has Reff �

4
3 �l�NL�P�P0. Amplification

increases Reff, up to the limit Reff ! P�2NP0 that is
reached upon approaching the laser threshold la ! L�p.

We conclude that amplification in a disordered wave-
guide increases the capacity for heterodyne detection of
coherent states, up to the limit

C` � e2NP0�PG�0; 2NP0�P�� ln2 , (15)

at the laser threshold. This limit is “universal,” in the sense
that it is independent of the degree of disorder (as long
as we remain in the diffusive regime). We have C` �
P�2NP0 ln2 for P ø NP0 and C` � log2�P�2NP0� 2
g� ln2 for P ¿ NP0. The increase in the capacity by
amplification in the diffusive regime is therefore up to
a factor 3L�8l for P ø NP0 and up to a factor 1 1

�lnL�l� �lnP�NP0�21 for P ¿ NP0�L�l�. All this is in
contrast to the case of a waveguide without disorder, where
the capacity is independent of the amplification.

We now relax the requirement of heterodyne detection
and instead consider the maximum communication rate
for any physically possible detection scheme [3]. We
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still assume that the information is encoded in coherent
states, and use the same Gaussian a priori distribution
p�m� ~ exp�2jmj2P0�P� as before. It has been conjec-
tured [18] that an input of coherent states with this Gauss-
ian distribution actually maximizes the information rate for
any method of nonentangled input with a fixed mean power
(the so-called one-shot unassisted classical capacity).

The capacity for an arbitrary detection scheme is given
by the Holevo formula [19,20],

CH � H

µZ
d2m p�m�rout�m�

∂

2
Z

d2m p�m�H�rout�m�� ,

where H�r� � 2Trr log2r is the von Neumann entropy.
For a Gaussian density matrix r ~

R
d2m exp�2jm 2

m0j
2�x�, one has [21]

H�r� � �x 1 1� log2�x 1 1� 2 x log2x 	 g�x� . (16)

Applying this formula to the Gaussian rout�m� in Eq. (8)
and the Gaussian p�m�, we arrive at the capacity

CH � g�tP�P0 1 s 2 1� 2 g�s 2 1� . (17)

For a channel without amplification s ! 1 and so
CH � g�tP�P0�, which lies above the capacity for
heterodyne detection considered earlier. At the other
extreme, upon approaching the laser threshold, s ! `

and we have CH ! log2�tP�sP0�, which is the same
limiting expression as for heterodyne detection.

The average over disorder can be carried out as previ-
ously by replacing s by s̄ and averaging over t with the
Rayleigh distribution P �t�. The result is

CH �
t̄P
P0

log2
s̄

s̄ 2 1
1

t̄P
P0 ln2

3 �eR
21
eff G�0;R21

eff � 2 eR
021
eff G�0;R021

eff �� , (18)

where Reff�R0
eff � 1 2 1�s̄.
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FIG. 3. Amplification dependence of the capacity C for het-
erodyne detection of coherent states [Eq. (12)] and the capacity
CH for arbitrary detection [Eq. (18)]. The input power is fixed
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FIG. 4. Curve in parameter space separating region A [in
which C` . CH�0�] from region B [in which C` , CH�0�].
In region A amplification of sufficient strength increases the
capacity CH, while in region B it does not.

As shown in Fig. 3, the dependence of CH on the
amount of amplification is nonmonotonic — in contrast
to the monotonically increasing C. Weak amplification
reduces the capacity CH, while stronger amplification
causes CH to rise to the limit C` at the laser threshold.
The initial decrease for la ¿ L is described by

CH�L�la� � CH�0� 2 �4lL2�3l2
a� log2�pla�L� . (19)

Whether or not amplification ultimately increases CH

depends on the degree of disorder and on the input power.
We indicate by A the region in parameter space where
C` . CH�0� and by B the region where C` , CH�0�.
In region A strong amplification increases CH while
in region B it does not. The separatrix is plotted in
Fig. 4. For P�NP0 ø 1, the analytical expression for
this curve separating regions A and B is P�NP0 �
�3L�4l� exp�23L�8l 1 g�, while for P�NP0 ¿ 1 we
find a saturation at l�L � 3�8e � 0.14. This means
that for P�NP0 ¿ 1 strong amplification increases the
capacity CH provided l , 0.14L.

At the laser threshold, both C and CH reach the same
universal limit C` given by Eq. (15), which depends only
on the dimensionless input power per mode P�NP0 and not
on the degree of disorder. This remarkably rich interplay of
multiple scattering and amplification is worth investigating
experimentally, for example, in the context of a random
laser [8,9].

In conclusion, we have investigated the effect of ampli-
fication on the information capacity of a disordered wave-
guide, focusing on the competing effects of stimulated and
043902-4
spontaneous emission. We have compared the capacity C
for heterodyne detection of coherent states with the Holevo
bound CH for an arbitrary detection scheme. While am-
plification increases C for any magnitude of disorder and
input power, the effect on CH can be either favorable or
not, as is illustrated by the “phase diagram” in Fig. 4.
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