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This work presents the first continuum shell-model study of weakly bound neutron-rich nuclei in-
volving multiconfiguration mixing. For the single-particle basis, the complex-energy Berggren ensemble
representing the bound single-particle states, narrow resonances, and the nonresonant continuum back-
ground is taken. Our shell-model Hamiltonian consists of a one-body finite potential and a zero-range
residual two-body interaction. It is demonstrated that the residual interaction coupling to the particle
continuum is important; in some cases, it can give rise to the binding of a nucleus.
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The microscopic structure of exotic nuclei near the
particle drip lines is a topic of great current interest in
low-energy nuclear physics. Apart from theoretical and
experimental nuclear structure interest, calculations for
nuclei far from stability have astrophysical implications,
especially in the context of stellar nucleosynthesis. What
makes this subject particularly challenging is the weak
binding, hence the closeness of the particle continuum.

There are many factors which make the coupling to the
particle continuum important. First, even for a bound nu-
cleus, there appears a virtual scattering into the phase space
of unbound states. Although this process involves inter-
mediate scattering states, the correlated bound states must
be particle stable; i.e., they have zero width. Second, the
properties of unbound states, i.e., above the particle (or
cluster) threshold directly reflect the continuum structure.
In addition, continuum coupling directly affects the effec-
tive nucleon-nucleon interaction.

The treatment of continuum states is an old problem
which, in the context of excited states near or above the
decay threshold, has been a playground of the continuum
shell model (CSM) [1]. In the CSM, including the re-
cently developed shell model embedded in the continuum
(SMEC) [2], the scattering states and the bound states are
treated on an equal footing. So far, most applications of the
CSM, including SMEC, have been used to describe situ-
ations in which there is coupling to one-nucleon decay
channels. However, by allowing only one particle to be
present in the continuum, it is impossible to apply the
CSM to “Borromean systems” for which A- and �A 2 2�-
nucleon systems are particle stable but the intermediate
A 2 1 system is not.

The reason for limiting oneself to only one particle in
the continuum in the CSM has been twofold. First, the
number of scattering states needed to properly describe
the underlying dynamics can easily go beyond the limit of
what present computers can handle. Second, treating the
continuum-continuum coupling, which is always present
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when two or more particles are scattered to unbound levels,
is difficult. There have been only a few attempts to treat
the multiparticle case [3] and, unfortunately, the proposed
numerical schemes, due to their complexity, have never
been adopted in microscopic calculations involving multi-
configuration mixing. Consequently, an entirely different
approach is called for. In this work, we formulate and
test the multiconfigurational shell model in the complete
Berggren basis. The resulting Gamow shell model (GSM)
is then applied to systems with two valence neutrons.

The Gamow states (sometimes called Siegert or reso-
nant states) [4] are generalized eigenstates of the time-
independent Schrödinger equation with complex energy
eigenvalues E � E0 2 iG�2, where G stands for the de-
cay width (which is zero for bound states). These states
correspond to the poles of the S matrix in the complex en-
ergy plane lying on or below the positive real axis; they are
regular at the origin and satisfy a purely outgoing asymp-
totics. In the following, we consider the Gamow states of
a one-body spherical finite potential. The single-particle
(s.p.) basis of Gamow states must be completed by means
of a set of nonresonant continuum states. This complete-
ness relation, introduced by Berggren [5], reads

X
n

jfnj� �f̃njj 1
1
p

Z
L1

jfj�k�� �fj�k��jdk � 1 , (1)

where fnj are the Gamow states carrying the s.p. angular
momentum j, n stands for all the remaining quantum num-
bers labeling Gamow states, fj�k� are the modified scat-
tering Gamow states, and the contour L1 in the complex
k plane has to be chosen in such a way that all the poles
in the discrete sum in Eq. (1) are contained in the do-
main between L1 and the real energy axis. If unj�r�
stands for the radial part of fnj, then ũnj�r� � unj�r��

and f̃nj � fnj�u ! ũ�. If the contour L1 is chosen rea-
sonably close to the real energy axis, the first term in (1)
represents the contribution from bound states and narrow
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resonances while the integral part accounts for the non-
resonant continuum. A number of completeness relations
similar to (1) were studied by Lind [6].

There have been several applications of resonant states
to problems involving continuum [7], but in most cases the
so-called pole expansion, neglecting the contour integral
in Eq. (1), was used [8]. The importance of the contour
contribution was investigated in Refs. [9,10] in the context
of the continuum RPA with separable particle-hole inter-
actions where it was concluded that the nonresonant part
must be accounted for if one aims at a quantitative descrip-
tion. This can be achieved by discretizing the integral in
Eq. (1) [11]. In our work we use the quadrature based on
the four-point interpolation.

In our study, Gamow states are determined using the
generalized shooting method for bound states which re-
quires an exterior complex scaling [7]. The numerical
algorithm for finding Gamow states for any finite-depth
potential U�r� has been tested on the example of the
Pőschl-Teller-Ginocchio (PTG) potential [12], for which
the resonance energies and wave functions are known ana-
lytically. Energies of all PTG resonances with a width of
up to 90 MeV are reproduced with a precision of at least
1026 MeV. The antisymmetric two-particle wave func-
tions jf

�1�
i1

f
�2�
i2

�J are obtained in the usual way by coupling
the s.p. wave functions of the considered bound, reso-
nance, and scattering Gamow states labeled by subscripts
i1, i2 to the total angular momentum J. The completeness
relation for two-particle states,

X
i1,i2

jf
�1�
i1

f
�2�
i2

�J J �f�1�
i1

f
�2�
i2
j � 1 (2)

can be used to calculate the two-body matrix elements. The
radial integrals entering the Hamiltonian matrix elements
were regularized separately by an appropriate choice of the
angle of the external complex scaling. The resulting (com-
plex symmetrix) Hamiltonian matrix can be diagonalized
using standard methods.

In most applications, one is interested in bound or reso-
nance N-body states but not in nonresonant continuum.
Bound states can be clearly identified, because the imagi-
nary part of their energy must be zero. No equally simple
criterion exists for resonance or scattering states. On the
other hand, the coupling between scattering states and
resonant states is usually weak, so one can determine the
resonances using the following two-step procedure. In the
first step, the shell-model Hamiltonian is diagonalized in
both (i) the full space including the contour and (ii) the
subspace of Gamow states (pole expansion). In the sec-
ond step, one identifies the eigenstates of (i) which have
the largest overlap with those of the second diagonaliza-
tion. For the case of two valence particles discussed in this
work, one can include in the basis up to 50 states in the
nonresonant scattering continuum.

In the following exploratory GSM calculations, we con-
sider two cases: (i) 18O with the inert 16O core and two
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active neutrons in the sd shell and (ii) 6He with the inert
4He core and two active neutrons in the p shell. Our aim
is not to give the precise description of 18O and 6He (for
this, one would need a realistic Hamiltonian and a larger
configuration space) but rather to illustrate the method, its
basic ingredients, and underlying features.

The “18O” case.—The s.p. basis was generated by a
Woods-Saxon (WS) potential with the radius R0 �
3.05 fm, the surface diffuseness d � 0.65 fm, the po-
tential depth U0 � 255.8 MeV, and the strength of the
spin-orbit term Uso � 6.06 MeV. With this choice of
parameters, the single-particle 0d5�2 and 1s1�2 states are
bound, with s.p. energies 24.14 MeV and 23.27 MeV,
respectively, and 0d3�2 is a resonance with the s.p. energy
0.9 2 i0.97 MeV. Energies of these s.p. states are close
to the s.p. states of 17O.

The completeness relation requires taking the s1�2, d5�2,
and d3�2 nonresonant continuums. For the 1s1�2 and 0d5�2

bound states, their nonresonant continuums can be chosen
along the real momentum axis. Since, to the first order,
the inclusion of these continuums should result only in
the renormalization of the effective interaction, they are
ignored for the purpose of the present exercise whose main
focus is the neutron emission. On the contrary, 0d3�2
is a resonance state, so the associated contour has to be
complex to produce the correct energy width. The contour
L1 representing the d3�2 continuum was chosen to consist
of three straight segments connecting the points k1 � 0 2

i0, k2 � 0.3 2 0.2i, k3 � 0.5 2 i0, and k4 � 2.0 2 i0
(all in fm21). The strength of the d force was taken to be
V0 � 2350 MeV fm3.

The completeness of the Gamow basis depends on the
number of discretized scattering basis states considered.
Table I illustrates this dependence. The real part of en-
ergy represents the binding energy of a state with respect
to the 16O core, i.e., the two-neutron separation energy.
For the resonance states, the real and imaginary parts of
energy do not change much by increasing the number of
scattering states. On the other hand, bound states acquire
a very small negative width which does not exceed sev-
eral keV. This spurious negative width depends strongly
on the basis size, and the convergence to zero is both slow
and nonmonotonic. The presence of a small and nega-
tive width is a feature of particle-bound states obtained in
the GSM. The results displayed in Table I show that only
about 10–20 vectors in the scattering continuum are suffi-
cient to keep the error of calculated energies and widths at
the acceptable level. It is also clear that the “pole approxi-
mation” (inclusion of no scattering states) gives a rather
poor description of bound and near-threshold states, while
it works fairly well for high-lying states carrying a sizable
width. In this respect, this result is consistent with the con-
clusions of Refs. [9,10].

In the considered example, the calculated one-neutron
threshold is 24.142 MeV (0d5�2 energy) while the
two-neutron threshold is at zero (the binding energy of
the core). Consequently, few states shown in Table I are
042502-2
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TABLE I. Dependence of energies (left number, in MeV) and neutron widths (right number,
in keV) of calculated states in 18O on the number of discretized scattering basis states along
the contour L1.

Jp 0 states 10 states 30 states 50 states

Bound states
01

1 211.73, 2131 212.11, 22.91 212.12, 0.27 212.12, 0.21
21

1 29.20, 226.37 29.24, 20.51 29.24, 20.031 29.24, 20.032
41

1 28.64, 213.51 28.64, 20.25 28.64, 20.004 28.64, 24 3 1024

01
2 27.66, 21.08 27.66, 20.324 27.66, 20.264 27.66, 20.260

21
2 27.85, 24.64 27.86, 20.167 27.86, 20.066 27.86, 20.049

Resonances
41

2 24.00, 289.8 24.03, 28.15 24.04, 0.54 24.04, 0.54
21

3 23.48, 29.08 23.48, 43.08 23.49, 44.65 23.49, 44.65
21

4 22.60, 46.45 22.61, 55.82 22.61, 57.02 22.61, 57.04
01

3 1.05, 2172 0.94, 218.64 0.94, 0.82 0.94, 0.76
21

5 1.63, 112.4 1.64, 111.9 1.63, 117.5 1.63, 118.5
two-neutron bound but one-neutron unstable, e.g., the
calculated width, 57 keV, of the Jp � 21

4 state at E0 �
22.61 MeV characterizes single neutron emission from
this state. The higher-lying states shown in Table I are un-
stable with respect to both one- and two-neutron emission.

In order to illustrate the configuration mixing induced
by the two-body interaction in the GSM, Table II shows
the complex squared shell-model amplitudes calculated
for the bound (01

1 and 21
1 ) and resonance (21

3 ) states in
18O. All eigenstates are normalized according to Berggren
[5,6]:

P
n c2

n � 1. One should notice that —contrary to
the conventional SM case—no modulus square appears
in the normalization. This implies that the probabilis-
tic interpretation of cn must be generalized [5,13]; i.e.,
when computing expectation values the real part of c2

n
should be associated with the mean value while the imagi-
nary part represents the uncertainty due to the decaying
nature of the state. As seen in Table II, the contribu-
tion from the nonresonant continuum plays a different role
compared to that from the resonant states. First, it is gen-
erally smaller than the leading components involving reso-
nant orbits, though in the example shown in Table II the
contribution of the 0d2

3�2 resonance is similar in magnitude.
Second, according to our calculations, the inclusion of the
contour primarily affects the imaginary part. Finally, the
contribution from two particles in the nonresonant contin-
uum, L�2�

1
, even though smaller than the one-particle con-

tribution, L�1�
1

, is not negligible.
The “6He” case.— A description of the Borromean nu-

cleus 6He is a challenge for the GSM. 4He is a well-
bound system with the one-neutron emission threshold at
20.58 MeV. On the contrary, the nucleus 5He, with one
neutron in the p shell, is unstable with respect to the
neutron emission. Indeed, the Jp � 3�22

1 ground state
of 5He lies 890 keV above the neutron emission thresh-
old and its neutron width is large, G � 600 keV. The
first excited state, 1�22

1 , is a very broad resonance (G �
4 MeV) that lies 4.89 MeV above the threshold. 6He,
on the contrary, is bound with the two-neutron emission
threshold at 0.98 MeV and one-neutron emission thresh-
old at 1.87 MeV. The first excited state 21

1 at 1.8 MeV
in 6He is neutron unstable with a width G � 113 keV.
In our GSM calculations, the states in 5He are viewed
as one-neutron resonances outside of the 4He core. A
good fit to 3�22

1 and 1�22
1 states in 5He is obtained by

taking the WS potential with R0 � 2.0 fm, d � 0.65 fm,
U0 � 247.0 MeV, and Uso � 7.5 MeV. With this poten-
tial, one finds the single-neutron resonances p3�2 and p1�2
at E � 0.745 2 i0.32 MeV and E � 2.13 2 i2.94 MeV,
respectively. The s.p. basis has been restricted to the
TABLE II. Squared amplitudes of different configurations in 01
1 , 21

1 , and 21
3 states of 18O. The sum of squared amplitudes of

all Slater determinants including one and two particles in the nonresonant continuum are denoted by L�1�
1

and L�2�
1

, respectively.
50 discretized scattering states were used.

c2 01
1 21

1 21
3

1s2
1�2 0.05 2 i9.1 3 1026 · · · · · ·

0d2
5�2 0.91 2 i6.1 3 1026 0.86 1 i1.2 3 1025 6.9 3 1023 2 i5.3 3 1024

0d2
3�2 0.02 2 i5.3 3 1023 1.9 3 1023 2 i4.4 3 1024 1.6 3 1023 2 i5.2 3 1024

1s1�20d5�2 · · · 0.13 2 i1.2 3 1025 4.5 3 1023 2 i3.6 3 1024

1s1�20d3�2 · · · 4.6 3 1023 2 i5 3 1024 0.03 2 i4.9 3 1023

0d5�20d3�2 · · · 7.7 3 1023 2 i8.4 3 1024 0.96 1 i4.5 3 1023

L
�1�
1 1.3 3 1022 1 i3.8 3 1023 2.5 3 1023 1 i1.7 3 1023 21.2 3 1023 1 i1.7 3 1023

L
�2�
1 3.4 3 1023 1 i1.5 3 1023 1.6 3 1024 1 i9.9 3 1025 5.5 3 1025 1 i4.3 3 1025
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TABLE III. Same as in Table II, except for 01
1 and 21

1 states
in 6He.

c2 01
1 21

1

0p2
3�2 0.95 2 i0.79 1.011 1 i0.0044

L
�1�
1 0.11 1 i0.76 20.011 2 i0.0049

L
�2�
1

20.06 1 i0.03 21.3 3 1024 1 i4.8 3 1024

0p3�2 resonance state and the p3�2 nonresonant contin-
uum. [The 0p1�2 resonance is very broad and cannot
be included in a meaningful way in the discrete sum in
Eq. (1). Consequently, following the reasoning applied
to the 18O case, the p1�2 contour along the real k axis
has been ignored.] The L1 contour for the nonresonant
p3�2 continuum is chosen to enclose the 0p3�2 resonance:
k1 � 0 2 i0, k2 � 0.2 2 0.2i, k3 � 0.5 2 i0, and k4 �
2.0 2 i0 fm21. The strength of the d force was taken to
be V0 � 650 MeV fm3. The number of points used to dis-
cretize the scattering continuum is 50, though even with
15 points the results are reasonably stable. With this pre-
cision, we reproduce the most important feature of 6He:
the ground state is particle-bound, despite the fact that all
the basis states lie in the continuum. Table III shows the
structure of wave functions of 01

1 and 21
1 states in 6He. The

important contribution from the nonresonant continuum is
seen, even for the 01

1 ground state which is particle stable.
In spite of a very crude Hamiltonian, the neglect of the
exact three-body asymptotics, etc., the calculated ground
state energy E � 20.951 2 i0.01 MeV reproduces sur-
prisingly well the experimental ground state energy with
respect to the two-neutron emission threshold. The ex-
cited state 21

1 is predicted to lie at 2.25 MeV, slightly
above the experimental value, and its width G � 700 keV
which depends sensitively on the position of the state with
respect to the emission threshold is somewhat too high
as well.

In conclusion, the complex-energy Berggren ensemble
is applied for the first time in shell-model calculations for
two-neutron states near the particle-emission threshold.
In addition to the successful inclusion of the continuum-
continuum coupling, we succeeded in solving another
principal problem of the GSM, i.e., the treatment of the
nonresonant part of the continuum. Another problem
which has been solved in our work is the selection of
physical states. As a result of the GSM diagonalization,
one obtains a multitude of states corresponding to the
many-body continuum, some being resonances and some
representing the nonresonant background. Our Letter
gives a simple and workable prescription on how to
identify the resonance states.

The results of the calculations are very encouraging. It
is seen that the contribution from the nonresonant contin-
uum is important, especially for bound and near-threshold
states. For instance, pairing correlations due to the
continuum-continuum scattering can bind the ground state
042502-4
of 6He with a completely unbound basis provided by
the s.p. resonances of 5He. This also demonstrates that
calculations in the spirit of the pole expansion cannot be
applied if one aims at the shell-model accuracy.

The particle-bound states calculated in the GSM are
characterized by small and (usually) negative width which
show nonmonotonic behavior as a function of the basis
size. According to our experience, only about 10–20 vec-
tors in the scattering continuum are sufficient to keep the
error of calculated energies and widths at an acceptable
level.

Very recently, we succeeded in performing GSM cal-
culations in the many-particle case. For instance, for the
sequence of 19,20,21O the predicted S1n values are 24.07,
27.55, and 23.95 MeV, respectively, in reasonable
agreement with the data. The calculated neutron emission
widths in these isotopes become positive for states above
the predicted one-neutron threshold, as expected. Further
applications of the GSM are in progress [14].

We thank J. Okołowicz and T. Vertse for useful dis-
cussions and suggestions. This work was supported in
part by the U.S. Department of Energy under Contracts
No. DE-FG02-96ER40963 (University of Tennessee) and
No. DE-AC05-00OR22725 with UT-Battelle, LLC (Oak
Ridge National Laboratory).

Noted added.—Recently, Id Betan et al. applied
Berggren basis to two-particle resonant states; see
Ref. [15].
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