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In extending the minimal standard model of quarks and leptons to include supersymmetry, the conser-
vation of baryon and lepton numbers is no longer automatic. I show how the latter may be achieved with
a new U(1) gauge symmetry and new supermultiplets at the TeV scale. Neutrino masses and a solution
of the m problem are essential features of this proposed extension.
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It is well known that the minimal standard model of
quarks and leptons conserves both baryon number B and
lepton number L automatically [as the consequence of
the assumed SU�3�C 3 SU�2�L 3 U�1�Y gauge symme-
try and its representation content]. It is also well known
that this is not true any more once it is extended to include
supersymmetry. Thus any such extension must be supple-
mented by a new symmetry which forbids the violation of
B or L or both. There are many ways to do this; the most
direct is to impose the conservation of an odd-even discrete
symmetry, i.e., R � �21�2j13B1L, which is of course the
defining hypothesis of the minimal supersymmetric stan-
dard model (MSSM).

There are two additional features of the MSSM which
are often called into question. One is the absence of
neutrino masses. This is, however, easily remedied by the
addition of three neutral singlet lepton superfields (analogs
of the three right-handed singlet neutrinos of the nonsuper-
symmetric standard model). The other is the presence
of the so-called m term in the MSSM superpotential, i.e.,
mf̂1f̂2, where f̂1,2 are the two Higgs superfields which
spontaneously break the electroweak gauge symmetry.
Since this term is allowed by the gauge symmetry and
the supersymmetry, there is no understanding of why m

should be of the order of the electroweak breaking scale,
rather than some very large unification scale.

Whereas there are piecemeal solutions of all the above
three problems of the MSSM, it is clearly desirable to
have a single principle which works for all three at the
same time. In this paper I show how a new simple U(1)
gauge extension of the MSSM may be used exactly for this
purpose [1].

Consider the gauge group SU�3�C 3 SU�2�L 3 U�1�Y 3

U�1�X . The usual quark and lepton (left-handed) chiral
superfields transform as follows:

�û, d̂� � �3, 2, 1�6; n1� , ûc � �3�, 1, 22�3; n2� ,

d̂c � �3�, 1, 1�3; n3� ,
(1)

�n̂, ê� � �1, 2, 21�2; n4�, êc � �1, 1, 1; n5� ,

N̂c � �1, 1, 0; n6� .
(2)
0031-9007�02�89(4)�041801(4)$20.00
They are supplemented by the two Higgs doublet super-
fields

f̂1 � �1, 2, 21�2; 2n1 2 n3� ,

f̂2 � �1, 2, 1�2; 2n1 2 n2� , (3)

with

n1 1 n3 � n4 1 n5, n1 1 n2 � n4 1 n6 , (4)

as in the MSSM. However, the m term is replaced by the
trilinear interaction x̂f̂1f̂2, where x̂ is a Higgs singlet
superfield transforming as

x̂ � �1, 1, 0; 2n1 1 n2 1 n3� . (5)

Thus

2n1 1 n2 1 n3 fi 0 (6)

is required so that the effective m parameter of this model
is determined by the U�1�X breaking scale, i.e., �x̂�.

To complete this model, I add two copies of the singlet
quark superfields

Û � �3, 1, 2�3; n7�, Ûc � �3�, 1, 22�3; n8� , (7)

and one copy of

D̂ � �3, 1, 21�3; n7�, D̂c � �3�, 1, 1�3; n8� , (8)

with

n7 1 n8 � 22n1 2 n2 2 n3 , (9)

so that their masses are also determined by the U�1�X

breaking scale.
To ensure the absence of the axial-vector anomaly [2],

the following conditions are considered [3]:

�SU�3�	2U�1�X : 2n1 1 n2 1 n3 1 n7 1 n8 � 0 , (10)

�SU�2�	2U�1�X : 3�3n1 1 n4� 1 �2n1 2 n3�
1 �2n1 2 n2� � 0, (11)
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�U�1�X 	3 : 3�6n3
1 1 3n3

2 1 3n3
3 1 2n3

4 1 n3
5 1 n3

6	 1 3�3n3
7 1 3n3

8� 1 2�2n1 2 n3�3 1 2�2n1 2 n2�3

1 �2n1 1 n2 1 n3�3 � 0 . (14)

Using Eq. (9), it is clear that Eq. (10) is automatically

satisfied. Using Eqs. (4) and (9), it is easily shown
that both Eqs. (11) and (12) are satisfied by the single
condition

n2 1 n3 � 7n1 1 3n4. (15)

Using Eqs. (4), (9), and (15), it is then simple to show that
Eq. (13) becomes

6�3n1 1 n4� �2n1 2 4n2 2 3n7� � 0 . (16)

Using Eq. (15), it is clear that 3n1 1 n4 � 0 contradicts
Eq. (6). Hence only the condition

2n1 2 4n2 2 3n7 � 0 , (17)

will be considered from here on.
At this point, the eight parameters (n1 to n8) are con-

strained by the five conditions given by Eqs. (4), (9), (15),
and (17). Consider n1, n4, and n6 as the independent pa-
rameters. The others are then given by

n2 � 2n1 1 n4 1 n6 , (18)

n3 � 8n1 1 2n4 2 n6 , (19)

n5 � 9n1 1 n4 2 n6 , (20)

n7 � 2n1 2
4
3

n4 2
4
3

n6 , (21)

n8 � 211n1 2
5
3

n4 1
4
3

n6 . (22)

It is now straightforward to simplify Eq. (14) to read

236�3n1 1 n4� �9n1 1 n4 2 2n6�
3 �6n1 2 n4 2 n6� � 0 . (23)

Whereas one factor, i.e., 3n1 1 n4, must be nonzero, there
remain two possible solutions, i.e.,

�A� n6 �
1
2

�9n1 1 n4� , (24)

�B� n6 � 6n1 2 n4 , (25)
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which render U�1�X free of the axial-vector anomaly. This
exact factoring of the sum of eleven cubic terms is certainly
not a trivial result [4].

Solution (A) is thus given by

n2 � n3 �
1
2

�7n1 1 3n4� ,

n5 � n6 �
1
2

�9n1 1 n4� ,

(26)

n7 � 24n1 2 2n4, n8 � 25n1 2 n4 . (27)

In the MSSM, L̂ and f̂1 transform identically under
SU�3�C 3 SU�2�L 3 U�1�Y . Here L̂ and f̂1 are distin-
guished by U�1�X if

9n1 1 5n4 fi 0 . (28)

Hence the lepton number L may be automatically con-
served as in the nonsupersymmetric standard model.

In the MSSM, the term ûcd̂cd̂c is allowed in the super-
potential. Here it is forbidden if

7n1 1 3n4 fi 0 . (29)

Hence the baryon number B may be automatically con-
served as well.

Solution (B) has

n2 � 5n1, n3 � 2n1 1 3n4, n5 � 3n1 1 2n4 ,
(30)

n6 � 6n1 2 n4, n7 � 26n1, n8 � 23n1 2 3n4 .
(31)

Hence L is automatically conserved if

3n1 1 4n4 fi 0, (32)

and B is automatically conserved if

3n1 1 2n4 fi 0 . (33)

Note that solutions (A) and (B) are identical if n4 � n1.
This turns out to be also the condition [5] for U�1�X to be
orthogonal to U�1�Y , i.e.,
041801-2
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There are two more anomalies to consider. The global SU(2) chiral gauge anomaly [6] is absent because the number of
SU�2�L doublets is even. The mixed gravitational-gauge anomaly [7] is proportional to the sum of U�1�X charges, i.e.,

3�6n1 1 3n2 1 3n3 1 2n4 1 n5 1 n6� 1 3�3n7 1 3n8� 1 2�2n1 2 n3� 1 2�2n1 2 n2�
1 �2n1 1 n2 1 n3� � 6�3n1 1 n4� , (35)
which is not zero. This anomaly may be tolerated if grav-
ity is neglected. On the other hand, it may be rendered
zero by adding U�1�X supermultiplets as follows: one with
charge 3�3n1 1 n4�, three with charge 22�3n1 1 n4�, and
three with charge 2�3n1 1 n4�. Hence they contribute
3 1 3�22 2 1� � 26 (in units of 3n1 1 n4� to Eq. (35),
but 27 1 3�28 2 1� � 0 to Eq. (14).

The allowed terms in the superpotential of either solu-
tion (A) or (B) consist of the usual allowed terms of the
MSSM with mf̂1f̂2 replaced by x̂f̂1f̂2. In (A), the usual
R-parity violating terms are forbidden by Eqs. (28) and
(29). As for the interactions of the exotic quark singlets of
Eqs. (7) and (8), n1 1 n4 fi 0 forbids Ûcd̂cd̂c, ûcd̂cD̂c,
and �ûi d̂j 2 d̂iûj�D̂; 13n1 1 n4 fi 0 forbids Ûcd̂cD̂c;
and n1 fi 0 forbids êcûcD̂, �n̂d̂ 2 êû�D̂c, N̂cûcÛ, and
N̂ cd̂cD̂. This means that if n4 � 2n1, then Ûc and D̂c

are diquark superfields, and, if n1 � 0, then Û and D̂ are
leptoquark superfields.

In solution (B), the usual R-parity violating terms
are forbidden by Eqs. (32) and (33). Furthermore,
n1 1 3n4 fi 0 forbids Ûcd̂cd̂c; n1 fi 0 forbids ûcd̂cD̂c

and �ûi d̂j 2 d̂iûj�D̂; 4n1 1 3n4 fi 0 forbids Ûcd̂cD̂c;
n1 1 n4 fi 0 forbids êcûcD̂, �n̂d̂ 2 êû�D̂c, and N̂cd̂cD̂;
and 5n1 2 n4 fi 0 forbids N̂cûcÛ. This means that Ûc

is a diquark if n4 � 2n1�3, and Û is a leptoquark if
n4 � 5n1; whereas D̂c is a diquark if n1 � 0, and D̂ is a
leptoquark if n4 � 2n1.

Even with the imposition of R parity, there are higher-
dimensional operators in the MSSM which may induce
proton decay, i.e., q̂q̂q̂l̂ and ûcûcd̂cêc. In the nonsuper-
symmetric standard model, since quarks and leptons are
fermions, these operators have dimension six, but in the
MSSM they have dimension-five pieces. Hence proton
decay may not be sufficiently suppressed, which is a
well-known problem of the MSSM. In this model, these
terms are forbidden [in both solutions (A) and (B)] by
3n1 1 n4 fi 0, i.e., the same condition that forbids the
m term.

As it stands, this model pairs n with Nc to form a
Dirac neutrino with mass proportional to �f2�. This would
require extremely small Yukawa couplings and is generally
considered to be very unnatural. On the other hand, if
n6 � 3n1 1 n4 is assumed [i.e., n4 � 3n1 in solution (A)
or n4 � 3n1�2 in solution (B)], then the extra singlets
used to cancel the mixed gravitational-gauge anomaly of
Eq. (35) are exactly the right number and structure to allow
041801-3
neutrinos to acquire naturally small seesaw Dirac masses,
as shown below.

In addition to the three singlets Nc of U�1�X charge n6,
there are now also three singlets N of charge 2n6 and three
singlets Sc of charge 22n6. The 12 3 12 mass matrix
spanning �n, Sc, N , Nc� is then of the form

M �

2
664

0 0 0 m1
0 0 m2 0
0 m2 0 M

m1 0 M 0

3
775 , (36)

where m1 comes from nNcf
0
2 with �f0

2 � fi 0, m2 comes
from NScx with �x� fi 0, and M is an allowed invariant
mass. Thus m1 � 102 GeV, m2 � 103 GeV, and M �
1016 GeV are expected. In the reduced �n, Sc� sector, the
effective 6 3 6 mass matrix is still exactly of the Dirac
form, i.e.,

Mn �

"
0 2m1m2�M

2m1m2�M 0

#
, (37)

and m1m2�M � 1022 eV is the right order of magnitude
for realistic neutrino masses.

In conclusion, a remarkable new U(1) gauge symmetry
has been identified in a simple extension of the supersym-
metric standard model which is capable of enforcing B or
L conservation or both, as well as the absence of the m

term and the presence of neutrino masses. Two solutions
have been obtained [from the exact factoring of Eq. (14)

TABLE I. Solutions (A) and (B), where ni � an1 1 bn4.

(A) (B)
a b a b

n2 7�2 3�2 5 0
n3 7�2 3�2 2 3
n5 9�2 1�2 3 2
n6 9�2 1�2 6 21
n7 24 22 26 0
n8 25 21 23 23

2n1 2 n3 29�2 23�2 23 23
2n1 2 n2 29�2 23�2 26 0
2n1 1 n2 1 n3 9 3 9 3
041801-3
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TABLE II. Conditions on n1 and n4 in (A) and (B).

(A) (B)
c d c d cn1 1 dn4 fi 0 forbids

3 1 3 1 m term
9 5 3 4 L violation
7 3 3 2 B violation
1 1 1 3 Uc as diquark
1 1 1 0 Dc as diquark
1 0 5 21 U as leptoquark
1 0 1 1 D as leptoquark

13 1 4 3 Uc, Dc as semiquarks

to become Eq. (23)] with many possible variations
regarding new interactions beyond the MSSM, as summa-
rized in Tables I and II. The origin of this new U(1) gauge
symmetry is unknown at present; it has no obvious fit into
any simple model of grand unification or string theory.
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