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Creation of a Molecular Condensate by Dynamically Melting a Mott Insulator
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We propose the creation of a molecular Bose-Einstein condensate by loading an atomic condensate
into an optical lattice and driving it into a Mott insulator with exactly two atoms per site. Molecules in a
Mott insulator state are then created under well defined conditions by photoassociation with essentially
unit efficiency. Finally, the Mott insulator is melted and a superfluid state of the molecules is created.
We study the dynamics of this process and photoassociation of tightly trapped atoms.
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The generation of Bose Einstein condensates (BEC) of
dilute atomic gases has resulted in a remarkable series of
experiments demonstrating various properties of quantum
degenerate gases [1]. One of the next major goals in this
effort is the realization of a molecular BEC. A promising
route towards a molecular condensate is the conversion of
an atomic BEC to molecules via photoassociation, a pro-
cess discussed so far for conditions of quasihomogeneous
trapping of atomic gases [2–5]. In this Letter we describe
a novel path to create condensates of composite atomic ob-
jects, in particular, a molecular BEC, based on photoasso-
ciation via a Mott insulator state of bosonic atoms trapped
in an optical lattice [6,7]. This provides an efficient way of
generating a molecular BEC, avoiding some of the prob-
lems encountered in the quasihomogeneous case [2]. It
also touches upon fundamental questions related to the for-
mation of a BEC by “melting” of a Mott-insulator (MI)
state in a quantum phase transition, as opposed to the fa-
miliar growth from a thermal cloud of atoms [8].

Experimental advances in manipulating BECs [1] and,
in particular, in loading a BEC into an optical lattice gen-
erated by interfering laser beams, have recently led to a
seminal experiment by Greiner and collaborators [7]. They
demonstrated a quantum phase transition from a BEC or
superfluid (SF) state into a MI by varying the lattice laser
intensity, as proposed theoretically in [6]. While a SF
phase has long range order, the MI phase corresponds to
the loading of a precise number of atoms into each lattice
site, i.e., Fock state occupation of lattice sites. Among the
proposed applications of this new atomic quantum phase
are the study of ultracold controlled collisions and the
study of quantum computing with neutral atoms [9]. In
the present context, the MI phase opens the possibility to
efficiently create a molecular BEC in the following four
steps: (i) an atomic BEC is loaded into an optical lat-
tice, (ii) the depth V0 of the optical lattice is increased
to create a MI with exactly two particles per lattice site,
(iii) a molecular MI state is produced by two-color pho-
toassociation of the atoms under tight trapping conditions,
and (iv) by decreasing the depth of the optical lattice the
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MI state is “melted,” and thus a molecular BEC is created
in a quantum phase transition.

At the end of step (i) above, we have an ensemble of
bosonic atoms illuminated by orthogonal, standing wave
laser fields tuned far from atomic resonance. These laser
fields generate a potential for atomic motion of the form
V � �x� �

P3
i�1 V0i sin2�kxi� with k � 2p�l the wave vec-

tor of the light and lattice period a � l�2. The dynam-
ics of bosonic atoms occupying the lowest Bloch band of
an optical lattice is well described by the Bose-Hubbard
model (BHM) [6] which includes the interaction Ua be-
tween particles occupying the same lattice site and the tun-
neling Ja of particles from one site to the next. The BHM
Hamiltonian is given by

Ha � 2Ja
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where ai is a bosonic destruction operator of a particle at
site i. The number of particles in site i is given by the
operator n̂i � a

y
i ai , and ei is an energy offset due to an

external trapping potential. The first sum in Eq. (1) runs
over all nearest neighbors denoted by �i, j�. Increasing
the laser intensity of the trapping laser tends to compress
atoms near the nodes of the lattice field, and thus leads to
an increased on-site interaction Ua, while the atomic tun-
neling rate Ja decreases [6]. The BHM predicts a quantum
phase transition from the SF phase to the MI state: accord-
ing to mean field theory this occurs at the critical value
U�c�
a � 5.8zJa [10] with z the number of nearest neigh-

bors of each site. This corresponds to a (moderate) po-
tential depth of V0 � 10ER where ER � h̄2k2�2m is the
recoil energy for atoms with mass m.

We will first illustrate the dynamics of the BHM Hamil-
tonian with a time-dependent depth V0�t� of the optical lat-
tice controlled by the laser intensity, leading to a variation
Ua�t� and Ja�t� in Eq. (1). We assume the system initially
to be in the SF ground state and calculate its time evolution
for the time dependence shown in Fig. 1a [6]. For a model
© 2002 The American Physical Society 040402-1
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FIG. 1. (a) Time dependence of Ua (solid curve) and Ja (dotted
curve). The vertical dashed lines separate the SF and MI regions
expected for adiabatic time evolution of the system in 1D.
Parameters: we assume 87Rb and l � 390 nm with V0�t� �
VSF 1 �VMI 2 VSF���1 1 exp��t2 2 t2

w��t2
s 	
, tw � 30�J0,

ts � 40�J0, VMI � 20ER , VSF � 5ER giving J0 � 0.13ER .
J0�z is the hopping matrix element for t ! 2`. (b) Transition
from the SF to the MI back to the SF phase for atoms. We
plot el (lower two curves are doubly degenerate) against t for
N � M � 5 in a 1D lattice with periodic boundary conditions.
(c) Atoms in the SF phase are driven to a MI phase (time
interval t , 0), converted to a molecular MI phase by a Raman
pulse (shaded region around t � 0), and melted to obtain a
molecular BEC (t . 0). We plot el (lower curve doubly degen-
erate) for the atoms (molecules) before (after) the conversion
for N�2 � M � 3 in 1D, and parameters Jb � Ja�2, Ua �
Ub � Uab with time dependence given in (a). (d) Same as (b)
but using the Gutzwiller ansatz (the lower curve is fourfold
degenerate).

problem of N particles, where N is small (�10), in a few
lattice sites, the time-dependent Schrödinger equation for
the wave function jC�t�� can be solved exactly. Figure 1b
plots the eigenvalues el of the one particle density matrix
ri,j � �ayi aj� [� �C�t�jayi ajjC�t��]. As expected, there
is one large eigenvalue for Ua , U�c�

a of the order of the
number of particles. The corresponding wave function is
approximately given by jcSF� ~ �

P
i a

y
i �N jvac� for N par-

ticles in M sites with jvac� the vacuum state. All the other
eigenvalues are small and are associated with the quantum
depletion of the SF state. As Ua increases and crosses the
critical point U�c�

a all eigenvalues tend towards one, cor-
responding to a diagonal single particle density operator
(MI). Upon ramping Ua down again, the SF is restored.

An extension of the BHM (1) in an optical lattice de-
scribes the situation with atoms and molecules present.
Denoting the annihilation operator of a molecule by bi ,
we add to the Hamiltonian (1) a tunneling Jb and on-site
interaction term Ub for molecules, and an atom-molecule
interaction term of the form Ha2b � Uab

P
i b

y
i bia

y
i ai .

The underlying assumption is that the laser beams generate
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an optical lattice for atoms and molecules with the same
structure of nodes and antinodes, although both lattices
can have different depth. The process of atom-molecule
conversion by photoassociation is described by the Hamil-
tonian Hconv � V�t�

P
i�b

y
i aiai 1 H.c.��

p
2, where V�t�

is an effective Rabi frequency which is turned on at time
t � 0 for a short time interval to convert two atoms at
one lattice site into one molecule. In practice, this process
will consist of several Raman steps to go to the molecular
ground state (see Fig. 2).

We emphasize several distinguishing key features of the
atom-molecule conversion process in an optical lattice.
First conversion is most efficient under tight trapping con-
ditions (in a regime where tunneling between lattice sites is
negligible). The high atomic densities associated with the
strong compression of the atoms opens inelastic collision
channels that typically quench all lattice sites with three or
more atoms. Thus we assume that only lattice sites with
occupation of two (or one) atoms survive the lattice com-
pression. These loss processes are added to our Hubbard
dynamics by writing down a master equation for a density
matrix that includes these decay channels. However, since
in the MI phase atomic number fluctuations are small, there
are only a very few lattice sites that are actually depleted by
this loss process. Second, for (exactly) two atoms trapped
at one lattice site we have a complete microscopic under-
standing of the two-atom dynamics, and the conversion to
molecules by photoassociation [11] beyond the effective
description contained in the Hubbard model.

The two-atom Schrödinger equation [11] at a given lat-
tice site separates for harmonic confinement into center-
of-mass and relative coordinates. The potential curves
for the relative motion of the two atoms in the trap are
schematically shown in Fig. 2: for small distances R we

FIG. 2. Production of ground state molecules using two Raman
transitions. The inset shows the first Raman transition (solid
lines) and the process where v2 is absorbed before v1 (dashed
lines). For 87Rb and for a trap frequency of n � 1 MHz, E0 �
2 MHz and outer turning point RTP � 500a0 (a0 � 0.0529 nm).
For the singlet pathway, Eb � 232 GHz and RTP � 32a0.
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have the familiar molecular Born-Oppenheimer potentials
while the large R behavior is dominated by the trap con-
finement. The trapping potential discretizes the molecular
continuum (scattering) states to form a series of harmonic
oscillator trap states with frequency n � �4V0ER�1�2�h̄
with V0 the potential depth. The goal is to perform a Rabi
flop VT � p from the lowest trap state of two atoms (i.e.,
the state associated with the lowest atomic Bloch band)
to a bound molecular state, with V the two-photon Rabi
frequency. The discreteness of the trap states makes this
a bound-bound Raman transition. The condition for not
exciting any other trap states, i.e., to avoid heating, is
V ø n. On the other hand, for incoherent processes (as
spontaneous decay from the intermediate state) with ef-
fective decay rate g to be small, we must have gT ø 1.
Thus we require a large two-photon Rabi frequency and
tight trapping, g ø V ø n. Note that V involves a ma-
trix element from the bound trap state to a molecular state,
which results in a scaling V ~ n3�4 [11]; i.e., under condi-
tions of tight trapping the two-photon Rabi frequency will
be significantly enhanced. We will give specific numbers
for these parameters for the case of 87Rb below. Thus it
is the preparation of the two-atom MI phase together with
strong confinement which guarantees the coherent conver-
sion of atoms to molecules with essentially unit efficiency.

Figure 1c shows results from the exact integration of
the Schrödinger equation for three sites with six atoms.
Starting from the SF phase, the atoms are driven to the MI
phase and converted into molecules at t � 0. Melting of
the molecular MI phase then produces a molecular SF.

To describe the dynamics with a large number of par-
ticles in 2D and 3D we employ a time-dependent mean
field approximation based on a Gutzwiller ansatz [10]. For
simplicity of writing we consider for the moment the case
of atoms alone, where we write the wave function as the
product of superposition states at the various lattice sites,
jG�t�� �

QM
i�1 �

P`
n�0 f

�i�
n �t� jn�i �. This ansatz is moti-

vated by the success and simplicity of time-independent
Gutzwiller mean field theory to model the ground state
and phase diagram of the BHM [10]. The ground state
is obtained from the variational principle �GjHjG� 2

m�GjN̂jG� ! min, where m is a chemical potential intro-
duced to enforce a given mean particle number [6]. From
the time-dependent variational principle, �G�t�jih̄ ≠

≠t 2

H�t� jG�t�� ! min, the following time-dependent equa-
tion is readily derived:

i �f�i�
n �

Ua

2
n�n 2 1�f�i�

n

2 Ja
X

�i,j�
�F�

j f
�i�
n11

p
n 1 1 1 Fjf

�i�
n21

p
n � , (2)

where Fi � �GjaijG� �
P

n f
�i��
n21

p
n f�i�

n is the atomic
SF density. Equation (2) is a nonlinear equation for
the amplitudes f�i�

n , which preserves both normalization
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of the wave function and the mean particle number.
In the SF limit and for a coherent state distribution of
f�i�
n � c

n
i exp�2jcij

2�2��
p
n!, Eq. (2) reduces to a time-

dependent Gross-Pitaevskii equation for ci on a lattice.
By projection to a state with definite particle num-

ber N , jGN � � PN jG��kPN jG�k �
R2p

0 dw exp�iNw� 3QM
i�1 �

P`
n�0 exp�2inw�f�i�

n jn�i	 a more consistent de-
scription is obtained. The resulting time-dependent Schrö-
dinger equation for the amplitudes f�i�

n is significantly more
complex. It can be shown, however, that f�i�

n of the number
projected Gutzwiller wave function again obey Eq. (2),
provided the variance of the particle numbers at each
lattice site satisfies Dni ¿ 1�

p
N (where Dn2

i � �n2
i � 2

�ni�2 with �n2
i � �

P
n n

2jf�i�
n j2 and �ni� �

P
n nj f

�i�
n j2).

Note that this excludes the regime where we have a precise
locking of the particle number, i.e., f�i�

n � dn,n0 , as in the
MI obtained from the non-number conserving Gutzwiller
for a homogeneous situation, when the number of par-
ticles N is commensurate with the lattice sites M and
n0 � N�M. However, a precise Fock state is never
realized in the time evolution we consider since the initial
superfluid density is not completely destroyed while ramp-
ing the optical lattice up. Also, an additional trap potential
confining the system to a certain region in space ensures
the existence of a remnant superfluid component. Below
we model the evolution of an initial SF to an (approxi-
mate) MI while changing Ua and Ja by integrating mean
field equations of the type (2). Figure 1d gives the results
obtained from Gutzwiller theory with the initial state given
by the time-independent Gutzwiller wave function, to be
compared with the exact integration of the time-dependent
Schrödinger equation in 1D for a few particles in Fig. 1b.
As expected, mean field theory shows a more pronounced
phase transition than the few atom 1D calculation.

Using a generalization of the Gutzwiller ansatz to
include superposition states of atoms and molecules,
jG�t�� �

QM
i�1 �

P`
na,nb�0 f

�i�
na ,nb

�t� jna ,nb�i�, where na
and nb refer to the atomic and molecular occupation,
respectively, we have numerically investigated the creation
of a molecular BEC in a 2D lattice with a superimposed
harmonic trapping potential. The results are shown in
Fig. 3. As expected we find that molecules are created
only in sites with an atomic occupation of two before the
Raman process (cf. Fig. 3b). They are surrounded by a
ring of atoms which originates from those sites with an
atomic occupation of one before the Raman transition (see
Fig. 3c). Finally, Fig. 3d shows the superfluid molecular
density after ramping the optical lattice down.

We now turn to the description of the coherent Raman
transitions involved in creating molecules in step (iii) of
our scheme. There are several constraints on the choice
of detunings and laser intensities (see Fig. 2) to maximize
V. First, the detuning D from an allowed excited pho-
toassociation resonance jCPR� (cf. Fig. 2) must be large
compared to the natural linewidth gPR of the intermedi-
ate state to suppress spontaneous Raman scattering. Also,
040402-3
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FIG. 3. The 2D lattice. (a) Initial atomic SF density jFaj
2.

(b) Number of atoms na and (c) number of molecules nb
immediately after Raman conversion. (d) Final SF molecular
density jFbj

2. The chemical potential is m � 2.5J0, the
additional trap potential is given by ei � 2J0�x2

i 1 y2
i ��5a2,

where xi , yi denote the coordinates of well i. The depth of the
optical lattice is changed 10 times slower than in Fig. 1.

one should not detune halfway between two resonances
since interference between these two intermediate states
will lead to a minimum in the effective two-photon Rabi
frequency V. For appropriate choices of D and the inter-
mediate state jCPR�, the coupling to all intermediate states
other than jCPR� can be neglected. Second, as outlined
above, we have to ensure that the process where a v2 pho-
ton is absorbed before a v1 photon (schematically shown
in the inset of Fig. 2) has negligible probability. This pro-
cess causes trap excitations of single atoms and thus leads
to heating. If both of these conditions are fulfilled, the
effective Rabi frequency V on Raman resonance for the
first Raman step is given by V � V1V2�2D, where V1,2
are the Rabi frequencies for the first (second) step, and the
effective spontaneous emission rate is g � gPRV

2
1�4D2.

For the case of 87Rb, the following Raman pathway is
viable for producing X1S1

g �y � 0, J � 0� molecules:

X1S1
g �ytrap � 0� ! A1Su�y � 213� ! X1S1

g �y � 120� ,

X1S1
g �y � 120� ! A1Su�y � 185� ! X1S1

g �y � 52� ,

X1S1
g�y � 52� ! A1Su�y � 24� ! X1S1

g �y � 0� .
(3)

A two-step Raman pathway also exists for producing
a3S1

u �y � 0, J � 0� molecules. For the first step of
the singlet pathway, the vibrational spacing near the
A1Su�y � 213� level is 110 GHz, gPR � 12 MHz, and
the binding energy of the X1S1

g �y � 120� is 31.9 GHz.
Given a trap frequency n of 1 MHz and intensities I1 �
1 W�cm2 and I2 � 1023 W�cm2 for the first Raman
step of Eq. (3), one obtains V1 � 0.71 MHz and V2 �
3.7 MHz. For a red detuning of 200 linewidths we get
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V � 1.1 kHz and an effective spontaneous Raman scat-
tering rate of g � 5.5 Hz. For the process described in
the preceding paragraph one finds that the undesirable
v2 2 v1 process has a blue detuning of 29.5 GHz off
the same intermediate level and a Rabi frequency that is
more than a factor of 100 below V. Although the pathway
for producing singlet molecules is partially optimized,
no attempt to optimize the intensities and detunings has
been made. However, we have chosen values to show that
the undesirable v2 2 v1 process can be sufficiently sup-
pressed. The rate limiting step in the overall pathway is
determined by the matrix element of the first Raman step.
The matrix elements for all subsequent steps are at least
3 orders of magnitude larger than this one.

In conclusion, generation of a MI phase of atoms allows
efficient conversion of atoms to molecules, and to obtain
a molecular condensate via melting in a quantum phase
transition. This idea can be immediately generalized to,
e.g., heteronuclear molecules, or one could use laser chem-
istry to build more complex composite objects (trimers,
etc.) and, possibly, corresponding condensates by quan-
tum melting. The key to designing these processes is the
fact that the MI phase provides us with a given small num-
ber of particles per lattice site (reaction partners) whose
few body dynamics can be understood in all detail and
controlled via laser interactions.
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