Comment on "Origin of Giant Optical Nonlinearity in Charge-Transfer-Mott Insulators: A New Paradigm for Nonlinear Optics"

Zhang [1] has proposed a novel mechanism for the giant optical nonlinearities in linear chain nickel halides (Ni-X) [2] and the cuprate Sr_2CuO_3 [3]. We show that Zhang's theory is inapplicable to these systems and, also, some of his numerical results are finite size artifacts. Zhang's extended Hubbard Hamiltonian for Ni-X contains a site energy dependent term $\Delta \sum_{i,\sigma} (-1)^i n_{i,\sigma}$. Zhang chose the Ni atoms to occupy the odd sites in his exact diagonalization of N = 8 sites, such that the site energy of Ni is *lower* than that of X. There is then a competition between the on-site correlation $U_{\rm Ni}$ (which prefers Ni³⁺) and Δ (which prefers Ni²⁺), and, near the interface, the nonlinear coefficient γ is huge for $\Delta < \Delta_c(U)$ and zero for $\Delta > \Delta_c(U)$ (see Fig. 1 of [1]). Based on earlier estimates of U and the *magnitude* of Δ , Zhang claims that Ni-X lie very close to the interface.

Within Zhang's Hamiltonian, the charge-transfer (CT) gap $E_{\text{CT}} \simeq (U_{\text{Ni}} - U_X) + V - 2\Delta$, which is in contradiction to all earlier theoretical work [4], within which $E_{\text{CT}} \simeq (U_{\text{Ni}} - U_X) + V + 2\Delta$. The conventional models [4] are consistent with the Okamoto *et al.* parametrization of Δ from experiments: Between Ni-Cl and Ni-Br, the former has both larger Δ and larger E_{CT} [5]. Zhang's choice of the *same* sign of Δ as in Ref. [5] is incorrect, as larger Δ for Ni-Cl [5] would now predict a *smaller* E_{CT} . Zhang's error originates from the negative site energies on the Ni sites. With parametrization consistent with the observed trends in E_{CT} in Ni-X [4], there is no competition between U_{Ni} and Δ , and, hence, no enhanced γ .

In addition to Zhang's model being inappropriate for Ni-X, there are serious errors in Zhang's analysis of the model. The sudden drop in γ by orders of magnitude to zero (see Fig. 1 of [1]) is a consequence of a crossover of the ground state from total spin S = 0 to S = 1, a finite size effect. It is well known that the ground state of a *fi*nite undistorted non-half-filled periodic ring with 4n electrons is S = 1. With $U_{Ni} \neq U_X$ and V > 0, this occurs at nonzero Δ . Zhang must have used a numerical approach that conserves total S_z and not total S. In Fig. 1(a), we have plotted $\Delta E = E(S_z = 1) - E(S_z = 0)$ for the parameters of Zhang's Fig. 1. In all cases, ΔE vanishes at exactly the same Δ_c as in [1]. Using a method that conserves total S, we have confirmed that, for $\Delta < \Delta_c$, E(S =0) = $E(S_z = 0)$, while for $\Delta > \Delta_c$, $E(S = 0) > E(S_z = 0)$ 0). With specifically N = 8 and 12 electrons, the S = 1ground state is not coupled to excited states by the current operator, and this is the reason for the sharp drop in γ in [1]. We have confirmed that the spin crossover does not occur for N = 12 with 18 electrons. The true Δ_c that defines the $Ni^{3+}-Ni^{2+}$ interface is larger. In Fig. 1(b), we have plotted $E_{\rm CT}$ as well as the matrix element \hat{J}_{01} of the current

FIG. 1. (a) Energy difference between the lowest $S_z = 1$ and $S_z = 0$ states of the N = 8 periodic ring for, from left to right, $U_{\rm Ni} = 2, 3, 4,$ and 5, with other parameters the same as in Fig. 1 of [1]. (b) $E_{\rm CT}$ and the matrix element of the current operator \hat{J} for S = 0 and $U_{\rm Ni} = 4$. The arrow indicates the Δ where spin crossover occurs.

operator between the lowest S = 0 state and the S = 0one-photon state for the N = 8 periodic ring, using the site energies in [1]. \hat{J}_{01} is symmetric about the true Δ_c indicating a nearly symmetric behavior of γ even with Zhang's parametrization.

In conclusion, (i) Zhang's site energies for Ni-X are incorrect, (ii) his determination of Δ_c is incorrect, and (iii) the calculated behavior of γ for $\Delta > \Delta_c$ in [1] is a finite size artifact. Finally, the giant increase in γ near $\Delta_c(U)$ [1] is largely due to decreasing $E_{\rm CT}$ rather than increasing \hat{J}_{01} . This does not permit device application, as losses due to absorption would be large.

We acknowledge discussions with A. Painelli and support from NSF-DMR-0101659.

R.T. Clay^{1,2} and S. Mazumdar¹

¹Department of Physics

- University of Arizona
- Tucson, Arizona 85721
- ²Cooperative Excitation Project ERATO
- Japan Science and Technology Corporation (JST) University of Arizona Tucson, Arizona 85721

Received 29 May 2001; published 26 June 2002 DOI: 10.1103/PhysRevLett.89.039701 PACS numbers: 71.30.+h, 42.65.An

- [1] G. P. Zhang, Phys. Rev. Lett. 86, 2086 (2001).
- [2] H. Kishida et al., Nature (London) 405, 929 (2000).
- [3] T. Ogasawara et al., Phys. Rev. Lett. 85, 2204 (2000).
- [4] H. Roder *et al.*, Phys. Rev. Lett. **70**, 3498 (1993);
 M. Alouani *et al.*, *ibid.* **71**, 1415 (1993); Y. Anusooya *et al.*, J. Phys. Condens. Matter **11**, 2395 (1999).
- [5] H. Okamoto et al., Phys. Rev. B 54, 8438 (1996).