
VOLUME 89, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JULY 2002

0

Traveling Waves and Nonequilibrium Stationary Patterns
in Two-Component Reactive Langmuir Monolayers

Ramon Reigada,1 Francesc Sagués,1 and Alexander S. Mikhailov2

1Departament de Química-Física, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
2Abteilung Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany

(Received 4 March 2002; published 28 June 2002)

A simple kinetic model of a two-component phase-separating Langmuir monolayer with a chemical
reaction is proposed. Its analysis and numerical simulations show that nonequilibrium periodic stationary
structures and patterns of traveling stripes can spontaneously develop. The nonequilibrium phase diagram
of this system is constructed and the properties of the patterns are discussed.
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Langmuir monolayers are films formed by organic lipid
or amphiphilic molecules disposed on a water-air interface.
Such molecular systems provide a classical example of
two-dimensional softly condensed matter and are of much
interest for biology, because cellular membranes can be
viewed as two weakly coupled monolayers. At thermal
equilibrium, Langmuir monolayers display a rich variety of
structures differing in the spatial order of molecules and in
the orientational order of their hydrophobic tails (see [1]).
Long-range dipole interactions can furthermore lead to a
variety of spatially modulated equilibrium phases [2]. The
molecular systems of a living cell are typically found un-
der nonequilibrium conditions, in the presence of chemical
reactions and energy flows. Biomembranes are also inho-
mogeneous and consist of many different species. With
this perspective, pattern formation in nonequilibrium mul-
ticomponent Langmuir monolayers should be studied. In
the experiments by Tabe and Yokoyama [3] (see also [4]),
illuminated Langmuir films formed by amphiphilic deriva-
tives of azobencene were investigated using Brewster-
angle microscopy. In this system, light of a selected
wavelength induced transitions between trans and cis con-
formations of individual molecules. The physical prop-
erties of these two conformations are different, and thus
the monolayer essentially represented a nonequilibrium
reactive binary mixture. In addition to photoinduced
periodic stationary patterns, traveling waves of molecular
reorientation resulting from photoisomerization processes
were observed. Formation of nonequilibrium stationary
Turing-like patterns in reactive phase-separating mixtures
is also known for such systems as polymer blends [5–7]
and monomolecular adsorbates on metal surfaces [8,9].
Periodic patterns of traveling and standing waves, result-
ing from a Hopf bifurcation with a nonzero wave number,
are furthermore possible in three-component reactive
phase-separating systems [10,11].

In this Letter, we investigate a model of a two-
component Langmuir monolayer with orientational order
in the presence of a nonequilibrium reversible reaction
converting one kind of molecules into another. Our
theoretical analysis and numerical simulations reveal
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that both Turing-like structures and patterns of traveling
waves exist in this greatly simplified model. While not
directly explaining the experimental results in Ref. [3],
our work provides evidence that traveling wave patterns
may represent a general property of Langmuir monolayers
subjected to composition changes.

In our model, a Langmuir monolayer is formed by a
mixture of two immiscible components A and B with
strongly different shapes. Namely, the molecules B are
supposed to have a crumpled conformation with only short
tails, as compared to molecules A. Therefore, molecules
B essentially play a role of passive dilution with respect to
the orientational ordering of molecules A. It is further as-
sumed that a nonequilibrium (e.g., photoinduced) reaction
interconverts A and B molecules. Note that A and B may
simply represent two isomers of the same molecule. For
simplicity, we assume that the forward and reverse reaction
rates are equal. Furthermore, we assume that all molecules
A have the same and constant azimuth direction, and there-
fore, only the tilt angle is necessary to describe their ori-
entation. The possibility of spatial two-dimensional (e.g.,
hexatic) order is also neglected. The total concentration in
the monolayer is considered constant, and therefore it is
sufficient to specify only the local fraction c of molecules
A in the monolayer (the local fraction of molecules B is
then given by 1 2 c).

The evolution equation for c reads

≠c

≠t
�

D

kBT
=�c�1 2 c�=m̃� 1 K�1 2 2c� , (1)

where D is the diffusion constant, T is the temperature,
m̃ is the local chemical potential defined as m̃ � dF �dc,
with F being the free energy functional introduced below.
The last term describes the reactions A ! B and B ! A
with equal rate constants K.

Since the molecular subsystem of component A is orien-
tationally ordered, a kinetic equation for the evolution of
the order parameter h � sinu, where u is the local aver-
age tilt angle of the molecules A, should be specified. We
assume that this equation is
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≠h

≠t
� 2G

dF

dh
2 Kq�c�h . (2)

The first term on the right side stands for the relaxation
mechanism with a typical relaxation time G21. The second
term takes into account that reactions converting molecules
from one conformation to another will also influence the
local average tilt. The form of this term and the choice of
the function q�c� are discussed later.

The free energy functional of the system reads

F �
Z ∑

2x̃0c2 1
1
2

x̃2�=c�2
∏

dx

1 kBT
Z

�clnc 1 �1 2 c�ln�1 2 c�� dx

1
Z ∑

2
1
2

p̃�c�h2 1
1
4

b̃h4 1
1
2

g̃�=h�2
∏

dx .

(3)

The first integral describes lateral interactions between
molecules, responsible for phase separation. Note that,
for short-range interaction potentials, x̃2 can be estimated
as x̃2 � 1

2 x̃0r2
0 , where r0 is the characteristic interaction

radius. The second term is the entropy contribution of a
two-dimensional lattice gas. The third term is the Lan-
dau free energy with respect to the tilt order parameter h
[1]. Generally, all coefficients in the Landau decomposi-
tion should depend on the local concentration c. We shall,
however, consider only weakly nonuniform states, where
local deviations of the concentration c from the uniform
stationary state c � 1�2 are small. Therefore, we neglect
the dependence of the coefficients b̃ and g̃ on the variable
c. On the other hand, the coefficient p̃ of the quadratic
term in the Landau free energy is already small near the
instability and its dependence on c must be retained, as
discussed later.

The equations can be readily adimensionalized: En-
ergy is measured in units of kBT , time in units of the re-
laxational time tr � �GkBT�21, and space coordinates are
rescaled with the relaxational length Lr �

p
D�GkBT �21.

The model will be then characterized by the dimension-
less parameters x0 � x̃0�kBT�21, x2 � x̃2GD21, b �
b̃�kBT�21, g � g̃GD21, and k � K�GkBT�21. The fi-
nal equations thus become

≠c
≠t

� =2c 1 =�c�1 2 c�=m� 1 k�1 2 2c� ,

≠h

≠t
� p�c�h 2 bh3 1 g=2h 2 kq�c�h ,

(4)

where p�c� � p̃�c� �kBT�21 and m corresponds to the di-
mensionless chemical potential,

m � 22x0c 2 x2=2c 2
1
2

dp�c�
dc

h2, (5)

once the entropic contribution in F has been converted
into the diffusive term in the first of Eqs. (4). The present
model can be viewed as a Cahn-Hilliard equation for the
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variable c coupled to a relaxational equation for the non-
conserved order parameter h [12]. The coupling is realized
both through the dependence of the control parameter p
for the tilt phase transition on concentration c and through
a reaction term in the equation for h.

The stationary uniform states of the system are c � 1�2
and h � 6

p
�p0 2 kq0��b, provided that p0 . kq0, or

h � 0, if p0 , kq0 [here q0 � q�c� and p0 � p�c�].
The linear stability analysis of the uniform states with
respect to small perturbations dc, dh ~ exp�ikx 1 gkt�
can be straighforwardly performed. If for the first un-
stable mode vk � Im�gk� fi 0, a Hopf bifurcation with a
finite wave number is found leading to traveling or stand-
ing waves (cf. [13]). On the other hand, if vk � 0 for the
first unstable mode, this is a Turing bifurcation leading to
stationary periodic patterns.

We first consider instabilities of the uniform tilted phase
�h fi 0�. In this case, the first dimensionless unstable
mode for the wave instability is

k2
w �

s
8k 1 8bh2

x2
, (6)

with a frequency that reads

v2
w � 2�2bh2 1 gk2

w�2 2
k2

w

4
p0

0�p0
0 2 kq0

0�h2. (7)

Here we use the notations p0
0 � dp�dc, q0

0 � dq�dc, and
p00

0 � d2p�dc2, all taken at c � c. The boundary of the
wave instability in the parameter space is given by

�x0 2 2 1
1
4 p00

0 h2 2 2g�2 � 8�k 1 bh2�x2 , (8)

provided that v2
w . 0. Note also that no pure Hopf bifur-

cation is possible since v
2
k , 0 for k2

w � 0.
The analysis of the Turing instability of the tilted uni-

form state yields a cubic equation for k2
t which can, how-

ever, be reduced to a quadratic equation if gk2 ø bh2.
When the coefficient g is small (see below), this condition
holds, and we obtain that the first unstable mode follows

k2
t �

s
8k

x2
. (9)

The boundary of Turing bifurcation is given then by∑
x0 2 2 1

1
4

p00
0 h2 1

p0
0

4b
�p0

0 2 kq0
0�

∏2

� 8kx2 .

(10)

For the untilted phase �h � 0� only a Turing instabil-
ity is possible, again with the first unstable mode k2

t �p
8k�x2, and the instability boundary given by

�x0 2 2�2 � 8kx2 . (11)

To construct the bifurcation diagram and to perform nu-
merical simulations, functions p�c� and q�c� should be
specified. For condensed phases, lowering the lateral pres-
sure of a Langmuir monolayer leads to an increase of its
equilibrium tilt [1]. If, as we assume, the molecules B
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play a role of passive dilution for the tilted molecules
A, increasing cB should be roughly equivalent to decreas-
ing the lateral pressure with respect to the component A.
Therefore, we choose p�c� � p0 1 2a�0.5 2 c�, where
p0 determines the equilibrium tilt in the monolayer with
c � c � 0.5 and a is a positive coefficient.

The function q�c� should be determined from the ki-
netic analysis with respect to the orientations of the
involved molecules. As an example, we assume that the
reaction B ! A, transforming crumpled molecules into
the elongated form, is strongly energetically activated (for
instance, by light), and therefore new molecules A are
created with a random tilt, independently of the tilt of the
surrounding molecules. Therefore, the average tilt of
newly created molecules A is assumed zero. Introducing
the local tilt density ch, we have that in this case it should
obey ≠t�ch� � 2Khc. According to it, a loss of ch

takes place when molecules A transform into B. Splitting
≠t�ch� and substituting the local variation of c due to reac-
tion, ≠tc � K�1 2 2c�, leads to ≠th � 2Kh�1 2 c��c.
Thus, in this limit, q�c� � �1 2 c��c.

In the considered example, p0 � p0, p0
0 � 22a, p00

0 �
0, q0 � 1, and q0

0 � 24. In this case, Eq. (8) for the
wave instability boundary reduces to 8p0x2 � �x0 2 2 2
2g�2, and does not include the reaction rate constant k.
Additionally, the condition v2

w . 0 should hold on this
boundary. It can be shown that this requirement is satisfied
in an interval of k only if the coefficient g is small enough
(for the parameters used below it should be smaller than
0.03). The boundary of the Turing instability is determined
by Eqs. (10) or (11) which do not include p0.

Figure 1 presents the computed phase diagram in the
parameter plane �p0,k� in the limit g ! 0. A uniform
tilted phase is found in region III and a uniform nontilted
phase is realized in region IVb. Periodic stationary Turing-
like nontilted structures are found in region IVa. In re-
gion II, stationary structures with periodic variation of
both the local concentration and the tilt are expected. Fi-
nally, in region I the uniform state is unstable with respect
to the spontaneous formation of waves and, thus, traveling
or standing waves are expected. Thus, if we keep constant
the parameter p0, determined by the lateral pressure, and
increase the reaction rate constant k, periodic stationary
tilted structures should be first observed. If the tilt is large
enough, they will be further replaced by traveling or stand-
ing waves which are observed in an interval of k. When
k is even further increased, periodic stationary nontilted
patterns and eventually the uniform nontilted phase should
be found. Note that, when the parameter x0 is increased,
the wave instability boundary in Fig. 1 moves upwards and
both Turing instability boundaries move to the right.

Numerical integrations of Eqs. (4) in one and two di-
mensions have been performed using an explicit Euler
scheme. Periodic boundary conditions were chosen to
model the behavior in a large system far from the bound-
aries. As initial conditions, small random perturbations
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FIG. 1. Phase diagram in the plane �p0, k� for the parame-
ters x2 � 0.0052, x0 � 2.27, a � 1.5, and b � 2 in the
limit g ! 0. The line separating regions I (traveling waves)
and II (tilted Turing structures) is determined from numerical
one-dimensional simulations; all other boundaries are obtained
analytically.

around c and h were taken. The coordinate step Dx
varied from 0.02 to 0.025, and the time step was usually
Dt � 1025 to assure a good numerical accuracy.

In Fig. 2 we present the pattern after transients in a typi-
cal 1D simulation corresponding to a system in region I.
In contrast to a stationary Turing-like structure (not shown
here), the distribution of tilt in a traveling wave pattern
is shifted with respect to the concentration profile. This
asymmetry determines the direction of the wave motion, as
indicated in the figure. Note that the spatial period of pat-
terns, lw � 2p�kw � 0.82, is smaller than the diffusion
length Ldiff �

p
D�K which is equal to 1 for the chosen

set of parameters. In this case, the characteristic interac-
tion radius is r0 � 0.067. Note that, by decreasing the
parameter x2 (and thus decreasing the interaction radius),
patterns with characteristic dimensions much smaller than
the diffusion length can be obtained.
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η

FIG. 2. Spatial distributions of c (solid line) and h (dashed
line) in a 1D wave pattern. The model parameters are k � 1 and
p0 � 1.5. Other parameters are the same as in Fig. 1, except
that g � 0.002.
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FIG. 3. Temporal evolution of (a) the concentration c and
(b) the tilt h under a gradual increase of k from 1.24 at t � 30
to 1.72 at t � 90. Other parameters and the system size are the
same as in Fig. 2. In the used gray-scale representation, darker
regions correspond to higher values of the displayed variables.

In the simulation presented in Fig. 3, the coefficient k

was slowly increased at a constant speed from 1 to 1.8
within time 100 while keeping all other parameters fixed.
This corresponds to traversing the phase diagram (Fig. 1)
along a horizontal line at p0 � 1.5. We see that, while
the wavelength of the traveling waves remains approxi-
mately constant, their velocity gradually decreases, and
eventually they transform into a stationary Turing-like pat-
tern. This transition is observed near the boundary between
the regions I and IVa, with a short delay explained by the
nonadiabatic nature of the pattern evolution. The Turing
patterns in region IVa should have zero tilt. Indeed, the
variable h decreases and vanishes (Fig. 3b) as the bound-
ary is crossed.

Figure 4 shows the evolution of a 2D system for the same
set of parameters as in Fig. 2. Three snapshots (4a–4c) dis-
play the concentration distribution at three different times.
To visualize the dynamical behavior of the system, the tem-
poral evolution along a one-dimensional cross section is
presented below. At the initial stage, a pattern of stand-
ing waves develops which later gives rise to a system of
domains filled with the waves that travel in different di-
rections. Later on, the system organizes in a coherent
wave train traveling at a constant velocity. However, after
some time (not shown in the figure), the stripes of the wave
train undergo irregular variations and a disordered pattern
of traveling waves with defects and dislocations appears.
This may imply a transverse modulational instability of
traveling stripes, previously discussed in the context of the
Bénard convection problem [14]. A detailed investigation
of such secondary instabilities of traveling waves will be
published separately.

In summary, we have constructed and investigated a
phenomenological kinetic model for a Langmuir mono-
layer consisting of two reactive components that undergo
phase separation. Though the model includes strong sim-
plifications, it already predicts nonequilibrium reaction-
038301-4
FIG. 4. Temporal evolution of the concentration c in a two-
dimensional system of linear size Ł � 10 and the same parame-
ters as in Fig. 2. The snapshots correspond to times t � 40
(a), t � 80 (b), and t � 100 (c). The bottom panel displays
the temporal evolution in the one-dimensional cross section in-
dicated by vertical dashed lines in the snapshots.

induced patterns of stationary or traveling stripes,
analogous to those observed in the earlier experiments
[3]. This suggests that formation of nonequilibrium
traveling structures may be a general property of reactive
multicomponent Langmuir monolayers. To obtain detailed
understanding of these phenomena, further studies of
kinetic reaction processes in such systems are needed.
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