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We apply the axiomatic approach to thermodynamics presented by Giles to derive a unique measure of
entanglement for bipartite pure states. This implies that local manipulations of entanglement in quantum
information theory and adiabatic transformations of states in thermodynamics have the same underlying
mathematical structure. We discuss possible extensions of our results to mixed and multipartite states.
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An understanding of entanglement and its characteriza-
tion form the cornerstone of the new and rapidly growing
field of quantum information and computation [1]. We
need to know how much entanglement is at our disposal
since entanglement is a form of resource that can en-
hance information processing [2]. Although a great deal
of work has recently been performed in this direction [3],
it is widely acknowledged that we do not have a com-
plete understanding of even the bipartite entanglement
for mixed states (i.e., states consisting of two subsys-
tems usually considered to be shared between two par-
ties). There are a number of measures to quantify entan-
glement which apply in different settings and have differ-
ent properties [3]. The consensus, however, is that local
operations aided with classical communication (LOCC)
are the key to explaining entanglement [4–6]. They
are able to separate disentangled states from entangled
states and thus introduce a directionality to entanglement
manipulation processes: an entangled state can always
be converted to a disentangled one by LOCC, but not
vice versa.

A comparison with thermodynamics will be very helpful
at this point. The second law of thermodynamics tells us
which (energy conserving) processes are allowed in nature
without any reference to the underlying physical structure.
The central role is played by adiabatic processes and en-
tropy is used to separate the possible from the impossible
processes according to a very simple principle: if a state A
has more entropy than B, then there is an adiabatic process
to go from B to A, but not vice versa. This was first clearly
realized by Caratheodory [7], who restated the second law
by saying that in the neighborhood of any state there exist
states which are adiabatically inaccessible from it. This
allowed him to derive an entropy function which is able
to introduce ordering into the set of physical states. The
second law thus tells us that adiabatic processes cannot de-
crease entropy of the system itself. The question, then, is
whether entropy is the only such function. To answer this
question, however, thermodynamics needed first to be put
onto a more secure mathematical foundation. In the words
of Caratheodory himself: “What Thermodynamics needs
is the establishment of logical order, essentially an intellec-
tual cleanup. This is a problem for a mathematician. The
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fundamental ideas and concepts have been introduced by
physicists long ago and a mathematician need not worry
about it.” The first such formalization came from Giles in
1964 [8] and was recently extended by Lieb and Yngva-
son [9].

An ideal physical theory should consist of two indepen-
dent parts: a mathematical theory and a set of rules of
interpretation of various mathematical objects involved in
the theory. By formalizing a physical theory in such a way
as to divorce it completely from the physical interpreta-
tion, it is possible to derive a mathematical structure that
may be useful in a completely different physical setting to
the original one. The question we address in this Letter is
whether it is possible to apply the thermodynamical rea-
soning of Giles and Lieb and Yngvason to entanglement
manipulations to derive a unique measure of the amount
of entanglement in a general setting. The analogy between
thermodynamics and quantum information would identify
adiabatic processes with LOCCs and entropy with entan-
glement. The aim is to order quantum states according to
whether they can be converted into each other by LOCCs.
We use Giles’s approach to show that the same abstract
structure of thermodynamics captures entanglement ma-
nipulations in quantum mechanics. As a consequence we
can derive a rigorous proof for the unique measure of en-
tanglement for pure states in the same way that a unique
measure of order (entropy) is constructed in thermodynam-
ics. We note that the approach of Giles is more suitable for
entanglement manipulations than the approach of Lieb and
Yngvason. This is because, as we see later, Giles bases
his approach on the transformation of a discrete number
of copies of a physical state, while Lieb and Yngvason
rephrase the axioms in terms of continuous mixtures of
states. The latter could also be applied to entanglement,
but it is in our view not as naturally suited as Giles’s
treatment.

Our abstract approach to entanglement is different from
the existing method where one looks for a minimal num-
ber of conditions for a measure of entanglement that would
single out a unique one [3,6,10,11]. The existing method
has a strong flavor of Shannon’s pioneering approach to
information theory [12]. Shannon considered functions on
the set of probability distribution which would describe
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their information content. By introducing three natural
conditions that this function should satisfy he arrived at
a unique measure, called the Shannon entropy. These con-
ditions are remarkably similar to the conditions leading to
a unique measure of entanglement for pure bipartite states
[10]. This, of course, is not surprising. It is well known
that the Shannon entropy of the probabilities derived from
Schmidt coefficients in the Schmidt decomposition [13]
of a pure bipartite state is a good measure of entangle-
ment [4].

The remaining part of the Letter is structured as follows.
First, we introduce the formal theory of Giles and we list
the set of axioms he introduced to capture thermodynami-
cal processes. Second, we define the (generalized) notion
of LOCC which allows us to apply the presented axioms
to entanglement manipulations. Finally, we compare our
approach to the other existing approach and discuss the
domain of its applicability.

To begin, we study a nonempty set S , whose elements
are called states, in which two operations, 1 and !, are
defined. States are denoted by a, b, c, . . . . A process is an
ordered pair of states �a, b�. In the following axioms we
omit the phrase “for all . . . .”

Axioms 1–5: (1) The operation + is associative and
commutative; (2) a ! a; (3) a ! b and b ! c �) a !

c; (4) a ! b () a 1 c ! b 1 c; (5) a ! b and a !

c �) b ! c or c ! b. Let us briefly discuss why these
axioms describe the structure of thermodynamics. The op-
eration 1 represents the physical operation of considering
two systems together. Therefore it must naturally be as-
sociative and commutative. The operation ! represents
an adiabatic process which is meant to convert different
physical states into each other. Therefore, like any other
physical process, it should naturally be reflective and tran-
sitive as in axioms 2 and 3. Axiom 4 is the first nonintuitive
property linking the operations 1 and !. In the forward
direction it is obvious that if state a can be converted into
b then the presence of another state c should not alter this
fact; i.e., we can convert a and c into b and c by convert-
ing a into b while doing nothing to c. In the backward
direction, however, this axiom is not completely obvious.
It says that if a process is possible with the aid of another
state, then we, in fact, do not need this other state for the
process. Thermodynamics deals with macroscopic systems
with a large number of degrees of freedom (subsystems). It
is in the “asymptotic” limit that this axiom becomes more
natural. Finally, axiom 5 is the key property which allows
us to compare different states and processes. It says that
any two states that are accessible from a third state must
be accessible to each other at least in one direction. Not
being able to do so would lead to states which would be in-
comparable as there would be no physical way of connect-
ing them. Thus a unique way of ordering states would be
impossible.

We now need the following definition in order to in-
troduce the remaining two axioms. It is important for
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comparing the sizes (contents/amounts) of different physi-
cal states.

Definition: Given states a and b we write a , b (and
say that a is contained in b), if there exists a positive
integer n and a state c such that

na 1 c ! nb or nb ! na 1 c.

This really says that the state a is smaller than b if a
requires the help of another state c to be converted to or
derived from b.

Definition: A state e is an internal state if, given any
state x, there exists a positive integer n such that x , ne.

This definition serves to introduce a reference state,
which is the one that can contain any other physical state
given sufficiently many copies of it. The concept of the
internal state is necessary to give a basic metric unit (yard-
stick) to quantify the physical content of a state in a unique
way (i.e., independent of states).

Now we state the remaining two axioms.
Axioms 6–7: (6) There exists an internal state; (7) given

a process �a,b�, if there exists a state c such that for any
positive real number e there exists positive integers m, n
and states x, y such that m�n , e, x , mc, y , mc, and
na 1 x ! nb 1 y, then a ! b. Axiom 6 is necessary if
we are to compare contents of different states in a unique
way. Axiom 7 is the most complex axiom in the theory,
although it is strongly motivated by the logic of thermody-
namical reasoning. Loosely speaking, it states that if we
can transform a into b with an arbitrarily small environ-
mental influence, then this influence can be ignored. This,
in some sense, introduces continuity into thermodynamical
properties (and will be crucial for entanglement manipula-
tions later). A reader interested in a more detailed physical
interpretation of the axioms is advised to consult Giles’s
book [8].

The above seven axioms are the crux of Giles’s for-
mal theory which capture the key idea behind the second
law of thermodynamics. Based on them Giles proves the
existence of the unique entropy function. However, his for-
malization is general enough to be applicable to local ma-
nipulations of quantum states leading to a rigorous proof
of the existence of the unique entanglement function for
pure states.

Now to apply the axioms to entanglement manipulations
consider S to be the set of all bipartite quantum pure states
and the operation 1 to be the tensor product ≠ (note that
≠ is commutative providing that when we exchange quan-
tum states we also exchange the operations on them). In
order to define the operation !, we first give the definition
of , in the quantum setting and then extend the concept
of LOCCs in the spirit of axiom 7. In the standard (nonex-
tended) definition, LOCC consists of the most general op-
erations that the two parties can perform locally on their
subsystems aided with classical communication [6].

Definition: We say that a pure state a is contained in a
pure state b, designated as a , b, if and only if (iff ) there
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exists an integer n and a state c such that for every small
real e we can find an LOCC map, F, for which we have
either

jjF�a≠n ≠ c� 2 b≠njj , e

or jjF�b≠n� 2 a≠n ≠ cjj , e .

Thus we say that a quantum state a is contained within a
state b if, with the help of some other state c, a can be
transformed by LOCC into b. Now we define what we
mean by a transformation of one quantum state into an-
other. Our definition is motivated by Giles’s suggestion
[8] to regard axiom 7 as a more general definition of the
arrow which captures real physical processes more pre-
cisely: we usually transform a large number of copies of
a system into a large number of copies of another system
and this happens with the aid of an environment.

Definition: We say that a pure state a can be converted
into a pure state b, designated as a ! b, iff for every small
real e, there exists a state c, such that for every small real
d there exist integers n, m and an LOCC map, F, and
states x and y satisfying the following property:

m�n , d, x , mc, y , mc

and jjF�a≠n ≠ x� 2 b≠n ≠ yjj , e .

We can see two important points in applying Giles’s for-
malism to entanglement manipulations. One is that the
approach is naturally asymptotic. This is of no surprise if
we expect a unique measure of entanglement to emerge.
In fact, if we deal with a finite number of copies [14], then
we know that axiom 4 does not hold in the backward di-
rection. Namely, we can have a situation where a cannot
be transformed into b, but this could be achieved with the
presence of an additional state c (known as the catalyzer
[15]). Point two is that our definition of LOCC is not only
asymptotic but allows the presence of an additional system
as long as the state returned at the end of the process is in-
cluded in the same state as the original [16]. Therefore
our definition of LOCC is tailored so that it naturally sat-
isfies all the axioms of Giles. What remains to be shown
is that these axioms lead to a unique measure of entangle-
ment imposed on pure quantum states. Following Giles’s
approach we first need to define the notion of the “compo-
nent of content function.” This notion is important as the
resulting entanglement measure will be unique up to the
addition of this function. The uniqueness we refer to is
up to an affine transformation. In simple terms this means
that the “origin” level of entropy is not fixed (i.e., we can
choose any number to represent the entropy of the internal
state) and also it can be scaled by an arbitrary real number
(i.e., the entropy function can be multiplied and this will
not affect its ordering properties).

Definition: A real-valued function Q defined for every
state is a component of content function if (i) Q�a ≠ b� �
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Q�a� 1 Q�b�; (ii) a ! b �) Q�a� � Q�b�. By entan-
glement measure we mean the following:

Definition: A real-valued function E defined for every
state is a entanglement function if (i) E�a ≠ b� � E�a� 1

E�b�; (ii) if a ! b and b ! a, then E�a� � E�b�; (iii) if
a ! b and b !� a, then E�a� . E�b�. The following two
theorems, stated here without proof, characterize the en-
tanglement function (see Giles [8], theorems A4.2 and
A.4.11).

Theorem 1: Let S1 be an entanglement function. If Q
is a component of content and l a positive real number,
then lS1 1 Q is an entanglement function; moreover, any
entanglement function S may be written in this form.

Theorem 2: There exists a positive entanglement
function.

The proof is constructive and can be found in [8]. It
leads to a definition for a measure of entanglement, which
in context of theorem 1 is unique. Giles’s definition (of
entropy) when applied to entanglement measures with the
internal state being a maximally entangled state becomes
simpler than his original definition involving an arbitrary
internal state. The basic reason for this is that our definition
of arrow satisfies a stronger condition than stated in axiom
5. Namely, given any two pure bipartite states b and c,
we have that either b ! c or c ! b. The definition of the
amount of entanglement of a now becomes

E�a� � inf�m�n: y , e≠m, y ! a≠n ≠ x� ,

where the infimum is taken over all integers m, n and all
states x, y and e is any internal state. This definition of
entanglement has a strong resemblance to the notions of
entanglement of formation [17]. Indeed, suppose that state
e is some maximally entangled state of two qubits. Then
the above measure of entanglement of state a looks at the
(asymptotic) minimal number of copies, m, of state e we
need to invest to obtain n copies of a, by LOCC with the
aid of a catalyzer. Note that we may well define the amount
of entanglement of a state a to be the maximum number
m of maximally entangled states we can obtain from n
copies of a when n is large. In this case we have the entan-
glement of distillation (interestingly, this is a concept that
Giles does not consider in thermodynamics). Otherwise,
we can use any other internal state e (e.g., a nonmaximally
entangled state) and all the resulting measures of entangle-
ment would be equivalent up to an affine transformation.

We now compare our approach with the other existing
approach for the uniqueness of the entanglement measure
for pure states due to Donald et al. [11]. Building on
the results of Popescu and Rohrlich [5] and Vidal [18],
they show that there are three conditions necessary for
the existence of a unique entanglement measure for pure
states: (i) additivity, (ii) monotonicity, and (iii) asymptotic
continuity. The unique measure resulting from these three
axioms is equal to the von Neumann entropy of entangle-
ment. Note that if in our definition of entanglement e is
taken to be a maximally entangled state, then the amount of
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entanglement becomes E�a� � inf�m�n: e≠m ! a≠n ≠

x�. It is very simple to show that this quantity is equal to
the von Neumann entropy of entanglement. This therefore
offers a different way of proving that Giles’s axioms lead
to a unique measure of entanglement.

In Giles’s formalism there is no reference to the num-
ber of subsystems or their dimensionality involved in en-
tanglement manipulations. Thus, it may be tempting to
conclude that there is a unique measure of entanglement
for pure states of multiparty systems. However, it is in
general not clear that axiom 5 will hold for more than
two subsystems. For example, suppose that state b is a
tripartite state jc1� ≠ �j0203� 1 j1213��, while state c is
�j0102� 1 j1112�� ≠ jc3�. Then these states cannot be con-
verted into each other by our definition of ! (where each
party 1, 2, 3 acts locally with the help of catalyzers and is
allowed to classically communicate to other parties) even
though both can be derived from a common state a of the
form j010203� 1 j111213�. This suggests that either the no-
tion of a unique measure of entanglement is misplaced for
more than two parties or that we have to extend the notion
of ! to satisfy axiom 4. The latter is, however, difficult
to imagine as we are already allowing quite a wide range
of local operations.

The situation is somewhat similar in the bipartite mixed
state case. Axiom 5 may not be satisfied in general al-
though there is no proof of this. If axiom 5 fails, this would
imply that there are states b and c which cannot be com-
pared by converting them into each other even though they
can be derived from a common source. This in turn means
that arbitrary order may be assigned to them, i.e., accord-
ing to one measure b would be more entangled than c
and according to some other measure it could be the other
way around without contradicting other axioms. Virmani
and Plenio [19] have already shown that if two measures
of entanglement coincide on pure states and order mixed
states differently, then they must be different measures
(i.e., they cannot be equivalent up to an affine transforma-
tion). Therefore we may again be in a situation that if we
want to have a unique measure of entanglement we need to
extend the definition of !. A possible avenue to explore is
to consider positive partial transposition processes defined
by Rains [20].

In this Letter we have shown that the set of axioms
originally presented by Giles to capture the second law of
thermodynamics can be applied to entanglement manipu-
lations. This leads to a unique measure of entanglement
for pure states in the same way that Giles showed the ex-
istence of a unique measure of order in thermodynamics.
In order to satisfy the axioms we had to define the notion
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of local operations to include the possibility of catalyzers.
Once catalyzers and arbitrarily large numbers of copies
are allowed in manipulations of entanglement we see that
Giles’s axioms are naturally satisfied. This then establishes
the fact that not only are there analogies between thermo-
dynamics and entanglement [5,6,21], but that the two, in
fact, have exactly the same underlying structure. There-
fore, it is of no surprise that same entropic measure is used
to order both thermodynamical states as well as quantum
entangled states. Our work suggests that this approach
may be extended to consider mixed and multiparty quan-
tum states.
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