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Geometrical Explanation and Scaling of Dynamical Heterogeneities in Glass Forming Systems
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We show how dynamical heterogeneities in glass forming systems emerge as a consequence of the
existence of dynamical constraints, and we offer an interpretation of the glass transition as an entropy
crisis in trajectory space (space-time) rather than in configuration space. To illustrate our general ideas,
we analyze the one-dimensional (d = 1) Fredrickson-Andersen and East models. Dynamics of such
dynamically constrained systems are shown to be isomorphic to the statics of (d + 1)-dimensional dense
mixtures of polydisperse noninterpenetrating domains. The domains coincide with arrested regions in

trajectory space.
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A glass forming system, such as a supercooled liquid,
exhibits a precipitous onset of slowness. As temperature
is decreased in these systems, typically in a range of a
few decades, relaxation times and viscosities increase by
several orders of magnitude, eventually surpassing experi-
mentally accessible times. For practical purposes, these
systems effectively freeze at the glass transition tempera-
ture T,. For reviews, see [1]. Interestingly, this dynami-
cal arrest carries no evident static structural signature of
growing length scales. Rather, experiments and simula-
tions show that supercooled liquids are dynamically het-
erogeneous [2,3]. Molecules in one region of the liquid
translate or rotate several orders of magnitude faster or
slower than those in a neighboring region. The spatial
extent of these dynamical heterogeneities is mesoscopic,
and the time scale of the slowest domains increases with
decreasing temperature at least as fast as the relaxation
time of the system. Such structural behavior seems be-
yond description with homogeneous methods such as mode
coupling [4] and mean field theories [5], and it is widely
neglected in analytical treatments (see, however, [6—8]).
Nevertheless, we show here that, for a broadly applicable
mechanism of dynamical arrest, these heterogeneities are
intrinsic to the nature of glass forming systems.

Our central result is that dynamical heterogeneities are
a manifestation of the existence of nontrivial structure in
the trajectories of glassy systems. This structure associ-
ated with dynamics is independent of any specific static
properties. Instead, the nontrivial dynamical structure is a
consequence of local dynamical rules that significantly re-
strict the size of accessible trajectory space. For example,
consider a highly compressed (or supercooled) glass for-
mer. Atoms in most regions of space are jammed, making
mobility possible in only a relatively low fraction of spa-
tial regions. These rare regions are those that are already
unjammed, or those that may be close in space to an un-
jammed region. In the evolution of such a system, one
therefore expects a clustering of mobile regions and thus a
mesoscopic demixing of mobile and static regions. Macro-

035704-1 0031-9007/02/89(3)/035704(4)$20.00

PACS numbers: 64.70.Pf, 05.70.Ln, 75.10.Hk

scopic demixing is not expected because dynamics should
conserve a canonical distribution. This picture of the ori-
gin of dynamic heterogeneity is in accord with the idea
that glassiness is not necessarily a consequence of either
disorder or frustration in the static interactions but of the
existence of effective constraints on the dynamics of the
system [9].

The simplest microscopic models that illustrate this view
are the Fredrickson-Andersen (FA) model [10] and the
East model [11]. They consist of a chain of Ising spins
o;==*1(G=1,...,N), with trivial Hamiltonian H =
> ; o, and single spin flip dynamics subject to local kinetic
constraints. In the FA model, a spin can flip if either of its
nearest neighbors is in the up state [10]. In the East model,
a spin can flip only if its nearest neighbor to the right is
up [11]. The equilibrium behavior of both models is that
of an uncorrelated spin system, with ¢ = 1/(1 + ¢'/T)
being the average concentration of up spins at temperature
T. The competition between decreasing the energy and
the need for facilitating spins leads to a glassy slow down
at low temperatures. The relaxation times go as 7 o /7
in the FA model, and as 7 « e!/(T*12) in the East model.
These models therefore correspond to a strong and a fragile
glass former, respectively. See [12] for a short review.

Let us first establish that both the FA and East mod-
els display dynamical heterogeneities. Consider the coarse
grained spins s;(¢; A1) = (Ar)~! gt dt' o;(t + t'). Fast
and slow spins in the time window of width Ar at time
¢ will correspond to low and high values of s7(r;Ar),
respectively. The spatial distribution of s7(r; Az) will de-
termine the extent to which the system is dynamically het-
erogeneous. The heterogeneity made evident with this field
depends on the coarse graining time. For Az very short,
only the trivial uncorrelated static structure is probed. The
same is true for At much larger than the relaxation time
where ergodicity is restored. For intermediate values of
Ar, however, we may expect to see spatial structure in the
s¥(t;Ar). In Fig. 1 we show that this is indeed the case

© 2002 The American Physical Society 035704-1



VOLUME 89, NUMBER 3

PHYSICAL REVIEW LETTERS

15 Jury 2002

10'; E
210’ g am10° E 5 0
n H U H— T= = ]
|~ To4a=10° i~ T=.3,At 104 110
1| — T=5,At=300 |~ T=4A=10)
10 f— T=.6,at=100 7 [|— T=6,at=10
H_ 2 3 — In3/In2
1= 1/k S B o
0.01 0.1 1 0.01 0.1 1
k k
FIG. 1. Structure factor S(k) of s7(r;Ar) for the FA

(left) and East model (right). The S(k) are the spatial
Fourier transforms of the normalized correlation functions
(s,g(t;At)sjz»(t;At)}/(s?(t;At)} (j =1i,i £1,..). () indicates
equilibrium ensemble average, so S(k) is independent of .

by plotting the structure factor, S(k), for the field s7(r; At)
calculated from simulations of the FA model (left panel)
and the East model (right panel). We have used coarse
graining times of about a fifth of the relaxation time, and
simulations were performed using continuous time Monte
Carlo [13] for systems of 10° spins averaged over 10°
samples. For both models, the existence of a correlation
length &4, is clear. Moreover, £a, grows, albeit slowly,
with decreasing temperature and, thus, increasing relax-
ation time. For the FA model, the structure factor de-
cays approximately as S(k) ~ k=2 for large k. In the
East model, at intermediate k, the structure factor goes as
S(k) ~ k=32 For larger momenta, the structure factor
is oscillatory, a feature which becomes more pronounced
with decreasing temperature.

In order to understand these behaviors, we study the
generating functional for the trajectories of these systems.
Consider a trajectory {o,} = (00,01, 02,...,0T1), where
g, = (o11,0%,...,0y;) denotes the configuration of the
N spin system at time ¢. Each trajectory has a probability
P({a;}), so that the total probability of going from g to
o1 is the weighted sum of such trajectories, Zs, 5, =
Z{&I}P({&,}). This partition sum, Zz, 5, , can be written
as [14]

Z5,5, = Z eSo[{(}z}]|:l—[ 5(hi,):|€AS[{&’}]. (1)
{a:} it
The first factor in the summand of (1) corresponds
to the probability of a trajectory in the absence of
dynamical constraints. Its action is just that of N non-
interacting ferromagnetic Ising chains in uniform fields,
So{a}) = i’vzl ,T:Bl (Jy——0yoipr1 + Jy—0oy +
J-—+0oi+1 tJ+4), where J s ={In[1 — y&1(1 — )] +
uln(l — ydtc) + vin[ydt(l — ¢)] + eln(ydtc)}/4,
v is a microscopic rate, and 6t is the time step. The
second factor in the summand of (1) embodies the kinetic
constraint. Only trajectories which satisfy the condition
hi; = 0 at all space-time points are allowed. If h;, is
chosen to be a positive number when the constraint is
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not satisfied, then [];, 8(hi) = 6(H ) = e **, where
H =3, hy and A — . The infinite coupling constant
means that the space of allowed trajectories is that of the
ground states of . The respective forms of H{ for the
FA and East models are

Hea = Z(l = 0yois1) (1 — oiv1) (1 — 0-1,)/8,

HEast = Z(l — 0y Ti+1) (1 — oi41,)/4,
it

so that the ith term is zero unless the spin i flips and the
facilitating spins are in the down state. The third factor in
the summand of Eq. (1) accounts for preservation of norm
and detailed balance. Trajectories which are allowed by the
constraints have different probabilities than they would in
the unconstrained case. In particular,

ASpa = Z(l = oiv1) (1 = oimi) (J-oiy + T4)/4,

it
ASgast = Z(l - 0'i+1t)(-7—0'it + -7+)/2,
it

where J+ = Jogo + In[1 — y81(1 — c)e *]/4 =
In(1 — yS8tce *)/4. These expressions describe a proper
dynamics for any A. When A = 0, the expressions
reduce to the trivial model of independent spins with
unconstrained dynamics. When A — o, they correspond
to the FA and East models.

HH and AS introduce competing spatial interactions in
the space of trajectories. Those of JH are strong, and they
are ferromagnetic in the sense that they favor the cluster-
ing of like spins. In contrast, those of AS are weak and
antiferromagnetic. Moreover, the scaling with distance of
interactions in H is different than that for those in AS, so
that nontrivial structure in the space of trajectories can be
expected. In Fig. 2, we show samples of equilibrium tra-
jectories for the unconstrained case (left), the FA (middle),
and the East models (right), at 7 = 1.0. The difference
between the constrained and unconstrained dynamics is
striking. The trajectories in both the FA and East models
display an extensive number of domains of down spins.
These domains are the origin of the dynamical hetero-
geneities. Spins within these domains do not change, so,
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FIG. 2. Equilibrium trajectories at T = 1.0 for the uncon-
strained case (left), the FA (middle), and the East model (right).
The vertical direction is space, corresponding to a spatial win-
dow of systems of size L = 10°. The horizontal direction is
time. Black/white corresponds to the up/down spins.
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when coarse grained in time, they correspond to slow re-
gions. To the extent that lowering temperature and thus
energy in an atomic system coincides with decreasing
facilitating spin concentration c, the structures observed in
Fig. 2 coincide with the correlation observed in the simula-
tion of supercooled liquids [3]. In particular, slow and fast
dynamical heterogeneities correlate with regions of low
and high energy, respectively. Since each column of the
pictures in Fig. 2 is an equilibrium configuration of the
noninteracting H, the structure seen in the trajectories is
purely dynamical.

Down spins must form closed domains in a trajectory
as a consequence of the local and causal nature of the
dynamical constraints. This fact is apparent from the
illustration in Fig. 3. A spin is able to flip only if an appro-
priate neighboring spin is in the up state at the same time.
It therefore will have flipped up previously and/or it will
flip down later. As such, a well-defined closed boundary
must exist between regions of up and down spins. These
boundaries are formed out of segments with shapes similar
to those depicted on the top of Fig. 3, with the possibility
of different slopes. In the FA model, the dynamical con-
straint is spatially symmetric, and four possible kinds of
boundary segments are allowed, with the restriction that
all the segments of the first (second) kind must be below
those of the third (fourth) kind. It follows that spin down
domains must form semiconvex polygons such as that pic-
tured at the bottom left of Fig. 3. Namely, any spatial
line cuts the boundary only twice. In the case of the East
model, only the third and fourth boundary segments are
allowed, which restricts the domains to shapes such as that
pictured at the bottom right of Fig. 3. Since slow dynami-
cal heterogeneities correspond to spatial projections of the
compact space-time down spin domains, they are neces-
sarily compact, while the converse is true for fast regions.
This observation is in agreement with what is found with
computer simulations of atomistic models [3].

The geometrical construction described above implies
that spin down domains cannot penetrate each other.

= £5F =
—
QZE?V=

FIG. 3. Geometry of slow domains imposed by the dynamical
constraints. Top: Allowed boundaries between regions of up
(black) and down spins (white). Bottom: Shape of domains in
the FA model (left) and in the East model (right).
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Therefore, the set of trajectories maps to the configuration
space of a two-dimensional mixture of polydisperse
noninterpenetrating objects of all the possible shapes
allowed by the dynamical constraints. This observation
motivates a description of the dynamics in terms of p(/, r),
the density of domains of typical spatial size (height) /,
and extension in time (length) . The partition function
for trajectories is then Z ~ [Dp(l,1)exp{—Q[p(l,1)]},
where Q[p(l,t)] is the free energy functional of this
density. Whatever estimate is used for Q[p(/,1)], it is
crucial that it enforces the constraint,

[ dtott.0 = pegtty = e @

This condition ensures that any spatial cut of the equilib-
rium trajectories is an equilibrium configuration. For a
density functional theory, it provides an approximation to
the effects of the antiferromagnetic interactions of AS.

In general, p(l,t) = p(llt)p(z), where p(l|t) is the
probability density of / conditioned on ¢, and p(¢) is the
probability density of domains of length ¢. In the case
of the FA model, a domain is bounded by the random
walks of two up spins between successive encounters, and
p(l|t) can be obtained by standard arguments [15],

p(lt) ~ I2(Dt) > exp(—1?/D1), (3)

with D ~ c. If the domains were isolated, p(f) would be
given by the probability of first return of a random walker,
which goes as p(r) ~ 173/2 for large 1, leading to () — ,
and to the formation of unbounded domains. This result,
however, corresponds to only the ferromagnetic part of the
interactions in trajectory space. It is frustrated by the con-
dition (2). By combining (3) with (2), we have instead
p(t) ~ (Tt)_l/ze_\/’/_T, with 7 ~ D7 1¢™2 ~ ¢3/T. This
result for 7 is precisely the relaxation time in the FA model.
The forms of p(I|¢) and p(¢) are verified in simulations of
the FA model [14]. We also see that, in terms of the scal-
ing variables [* = cl and t* = t/7, the density p(I*, ") is
independent of temperature. An illustration of these scal-
ing relations is given in Fig. 4. The typical height of do-
mains grows with the cubic root of the relaxation time,
thus explaining the slow increase of the correlation length
éar with decreasing temperature in the structure factors
of Fig. 1. Slow growth and domains being mesoscopic
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FIG. 4. Equilibrium trajectories in the FA model for T = 0.6,
0.5, 0.4. Vertical direction is space, which scales with 1/c, and
horizontal is time (¢/10%), which scales with 7.

035704-3



VOLUME 89, NUMBER 3

PHYSICAL REVIEW LETTERS

15 Jury 2002

rather than macroscopic are consistent with experimental
observations [2]. Moreover, since the trajectories are ex-
tensive in interfaces, the form of the structure factor for
large k corresponds to a spatial projection of Porod’s law
S(k) ~ k=@ [16].

In the case of the East model, typical distances and
times are related at low temperatures by a 7 depen-
dent dynamic exponent z(T) ~ 1/(T 1n2) [12,17]. We
therefore expect the conditional probabilities to be
p(l]t) o exp[—1*D)/t]. The condition (2) then leads to a
stretched exponential form for the persistence function,
[7 i’ p(t') ~ exp[—(1/m)B DY, where B(T) ~ 1/2(T)
and 7 ~ ¢ *"), in accordance with previous results
[18]. In this case, £a, increases even more slowly with
decreasing T than in the FA model. The geometry of the
domains also explains the differences in the FA and East
structure factors shown in Fig. 1. In contrast to the FA
case, where neighboring domains can be compressed to
the point of contact, the boundary between domains in
the East model cannot be formed just by a single line of
up spins in space-time. Instead, to decrease energy and
thus increase probability, the boundary is wet by smaller
domains, ideally as in Fig. 5. This structure has fractal
dimension d; = In3/1In2, and gives rise to the behavior
S(k) ~ k=9 at intermediate momenta. At larger k, S(k)
probes the granular structure of the boundary, and thus
exhibits the oscillatory behavior shown in Fig. 1 [19].

The ideas presented here in detail for the FA and the
East models generalize to higher dimensions provided the
dynamical constraints are causal and local, so that exci-
tations favor the creation of neighboring excitations. In
general, dynamical constraints will appear only below a
crossover temperature 7, or above a corresponding pack-
ing fraction. This can be incorporated into our description
by allowing the coupling A to be a function of tempera-
ture or packing fraction, increasing with decreasing 7' or
increasing packing. The temperature 7, will then coincide
with the so-called “landscape” temperature [1].

The domains that thus appear for T < T, and grow
with further decrease in 7 can lead to a broken sym-
metry. Consider, for example, the partition function
Zr(q,T) for trajectories between configurational fluctua-
tions with overlap ¢ at time difference T, Z7(q,T) =
260501 P00 2505, 0(q — N7' D 8008 0i7), where
8oy, = o — (o), and p is the Boltzmann distribu-
tion. Since Zr(g,7 ) is proportional to the number of
such trajectories, it is natural to write it as Z7(q, T ) «
exp[N wr(q,T )], where wr(g,T) is the entropy density
in trajectory space. It is approximately the entropy of
mixing of the slow domains in trajectory space. At values
of T for which the temporal extension of these domains
is much smaller than T, wr(g, T ) is extensive in time,
and Z7(g,T) is peaked at ¢ = 0. In this case, correlation
functions are exponential.

Nonzero overlap is probable, i.e., Zr(g, T ) is peaked at
finite ¢, only when T is comparable to or smaller than
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FIG. 5. Energetically favored wetting of the boundary of a spin
down domain in the East model.

the length of typical slow domains. As temperature is
decreased, the size of these domains increases, constrict-
ing the available trajectory space. At a low enough tem-
perature, we may therefore expect wr(g,7 ) to become
subextensive, leading to a probable finite g throughout a
relatively large range of 7 . This change in behavior of
w7(q, T ) signals a dramatic change in the number of avail-
able trajectories and a corresponding onset of dynamical
arrest. In this picture, therefore, the glass transition coin-
cides with an entropy crisis in trajectory space, rather than
in configuration space.

This work was supported by the National Science Foun-
dation, the Glasstone Fund, and Merton College, Oxford.

[1] C. A. Angell, Science 267, 1924 (1995); P. G. Debenedetti
and F. H. Stillinger, Nature (London) 410, 259 (2001).

[2] See, e.g., H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999);
M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).

[3] See, e.g., D. Perera and P. Harrowell, Phys. Rev. E 54, 1652
(1996); C. Donati et al., Phys. Rev. E 60, 3107 (1999).

[4] W. Gotze and L. Sjogren, Rep. Prog. Phys. 55, 241 (1992).

[5] T.R. Kirkpatrick and D. Thirumalai, Phys. Rev. Lett. 58,
2091 (1987); T.R. Kirkpatrick and P. Wolynes, Phys.
Rev. B 36, 8552 (1987).

[6] S. Franz et al., Philos. Mag. B 79, 1827 (1999).

[7] X. Xia and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A.
97, 2990 (2000); Phys. Rev. Lett. 86, 5526 (2001).

[8] H.E. Castillo et al., Phys. Rev. Lett. 88, 237201 (2002).

[9] R.G. Palmer et al., Phys. Rev. Lett. 53, 958 (1984).

[10] G.H. Fredrickson and H. C. Andersen, Phys. Rev. Lett. 53,
1244 (1984).

[11] J. Jackle and S. Eisinger, Z. Phys. B 84, 115 (1991).

[12] M.R. Evans, J. Phys. Condens. Matter 14, 1397 (2002).

[13] M.E.J. Newman and G. T. Barkema, Monte Carlo Methods
in Statistical Physics (Oxford University Press, Oxford,
1999).

[14] D. Chandler and J. P. Garrahan (to be published).

[15] M.E. Fisher, J. Stat. Phys. 34, 667 (1984).

[16] A.J. Bray, Adv. Phys. 43, 357 (1994).

[17] P. Sollich and M.R. Evans, Phys. Rev. Lett. 83, 3238
(1999).

[18] A. Buhot and J.P. Garrahan, Phys. Rev. E 64, 021505
(2001).

[19] The idea of wet interfaces in configuration space appears
in a recent equilibrium theory of glass formers [7], but it is
difficult to see a connection between that idea pertaining to
statics and the wet interfaces of trajectory space discussed
here.

035704-4



