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Solitonlike Beam Propagation along Light-Induced Singularity of Space Charge
in Fast Photorefractive Media
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We investigate light beam propagation in a fast photorefractive medium placed in an alternating electric
ac field to enhance the nonlinear response. It is shown that the joint action of the optical and material
nonlinearities leads to formation of a narrow singularity of the light-induced space charge at the intensity
maximum and to self-trapping of the light energy near the corresponding discontinuity of the index
profile. Owing to the strong saturation of the material nonlinearity, the trapped beam propagates over
long distances with only a weak loss of its power.
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It has become clear in recent years that the photorefrac-
tive (PR) nonlinearity manifests itself in a wealth of excit-
ing optical phenomena. Among them are propagation of
solitons [1] and surface waves [2], pattern formation [3],
parametric scattering [4], subharmonic generation [5,6],
and critical enhancement [7]. Most of the mentioned PR
effects are generic; they are easily accessible at low light
intensities and distinguished by a wide variety of forms.

The optical phenomena specific of PR media are remark-
able in the sense that they result from a joint action of
the optical and material nonlinearities. As shown recently,
hybridization of these nonlinearities is able to provide an
almost infinite growth (singularity) of the rate of spatial
amplification when approaching the threshold of the sub-
harmonic generation [7].

Another surprising effect of the same category, closely
related to the soliton propagation, has come onto the scene
in 2000 [8]. It was found that under certain conditions a
localized light beam creates a narrow singularity of space
charge at the intensity maximum, which leads to a discon-
tinuity (shock wave) of the refractive index owing to the
electro-optic effect. This discontinuity separates regions of
strong self-focusing/defocusing in the medium. The neces-
sary conditions for the formation of the charge singularity
can be easily achieved in fast PR crystals (sillenites and
semiconductors) placed in a quickly oscillating electric ac
field.

The singular behavior of nonlinear systems has always
attracted considerable interest. As relevant examples we
mention the shock waves described by the Burgers equa-
tion [9], and the 2D and 3D charge singularities (Langmuir
collapse) in plasma physics [10]. In our case, the effect of
charge singularity on beam propagation may exhibit two
opposing tendencies: On the one hand, the material non-
linearity works to support the shock wave. On the other
hand, diffraction by the abrupt index profile tends to wash
out the singularity. What is the scenario of beam propa-
gation in this case? Is it beam broadening accompanied
by disappearance of the charge singularity, or the soliton
propagation coupled with the refractive index discontinu-
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ity, or something else? Solution of this new and challeng-
ing problem seems to be of general interest. In this Letter
we intend to give such a solution.

Prior to coming to the matter, we mention a few as-
pects related to the actual problem. The PR solitons are
usually associated with a local nonlinear response [11] (a
spatially symmetric beam produces a symmetric index pro-
file). The results known for the nonlocal nonlinearity refer
to the gradient response (the index change is proportional
to the intensity gradient). They include two exact solu-
tions that describe propagation of a specially shaped pla-
nar light beam with stationary transverse profile [12] and
propagation of 1D Gaussian input beams [13]. Since these
Gaussian beams exhibit diffraction, soliton propagation is
not expected for the gradient response.

Now let a planar light beam propagate along the z axis
and x be the transverse coordinate. The nonlinear in-
dex change dn is expressed as dn � 2n3

0rE�2, where
E � Ex � E�x, z� is the light-induced space-charge field,
n0 the nonperturbed refractive index, and r the electro-
optic coefficient. Since dn ø n0, the dependence dn�x�
can be found from the 1D nonlinear equation derived in
[8] for fast PR crystals on the basis of the conventional
one-species charge transport model [5]. This material
equation written for the normalized field e � E�E0 (E0
is the applied ac-field amplitude) reads∑

�1 1 I� �1 2 e2�
1 1 lsex

∏
x

1
1
l0

e�1 1 I� � 0 . (1)

The subscript x stands for the transverse differentiation,
l0 � mtE0 and ls � ´´0E0�qNt are the drift and satura-
tion lengths, mt is the mobility-lifetime product for photo-
electrons, ´´0 the dielectric constant, q the elementary
charge, and Nt the trap concentration. The beam inten-
sity I is normalized to the effective background intensity
characterizing the dark conductivity [1].

The material Eq. (1) is derived by averaging over the
rapid ac oscillations [8]. Its structure reflects that the pro-
gressive importance of the higher spatial harmonics starts
from very low values of the light contrast [5,6]. The
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term e2 in the numerator originates from the drift non-
linearity. The term lsex in the denominator, including the
smallest characteristic length and defining the (second) or-
der of the differential equation, describes trap saturation.
It is important only in the vicinity of the discontinuity.
With this term omitted it is impossible to obtain a local-
ized solution for e�x�. This resembles indeed the physics
described by the Burgers equation. The main conditions
for validity of Eq. (1) are not very restrictive [8]. They
are as follows: smallness of the lifetime and the ac-field
period as compared to the dielectric relaxation time and
the inequality E0 ¿ �kBTNt�´´0�1�2. The feature of fast
PR crystals crucial for the discontinuity formation is the
inequality ls�l0 ø 1. Typically, in the sillenites (BSO,
BTO, BGO) and semiconductors (GaAs, CdTe, etc.) we
have ls�l0 & 1022.

Equation (1) with the boundary conditions e�6`� � 0
can be solved numerically by the relaxation method [14]
for an arbitrary beam profile. In our calculations we use the
following parameters representative for experiments with
the sillenites: ´ � 56, mt � 2.4 3 1027 cm2�V, Nt �
2 3 1016 cm23, and E0 � 25 kV�cm. They correspond
to the drift length l0 � 60 mm and the saturation length
ls � 0.4 mm.

Figure 1 illustrates the light-induced field profile for
an input Gaussian beam, I�x, 0� � I0 exp�24x2�d2�, of
width d � 36 mm for four values of the peak intensity
I0. Obviously, we are dealing with a kind of nonlocal re-
sponse. For I0 * 1 (dominating photoconductivity) the
field profile is characterized by a highly pronounced dis-
continuity at the beam center. The value je�x�jmax is be-
low 1 but it approaches quickly unity with increasing I0.
This strong saturation of the field amplitude implies that
the concentration of ionized donors is comparable to that
of acceptors. Then, from the Poisson equation one con-
cludes that the characteristic width of the discontinuity is
of the order of the saturation length ls ø d, l0. When the
beam width d increases above �5 6�l0 the discontinuity

FIG. 1. Normalized space-charge field versus the transverse
coordinate; the curves 1, 2, 3, and 4 correspond to the nor-
malized peak intensity I0 � 0.1, 0.5, 2, and 10, respectively.
033902-2
abruptly disappears. The gradient response (e � 2l0Ix)
corresponds to extremely small values of the beam ampli-
tude, I0 ø 0.1.

To describe the nonlinear beam propagation, we supple-
ment Eq. (1) by an optical equation for the beam enve-
lope C. The later has the form of a �1 1 1�D nonlinear
Schrödinger equation (see, e.g., [9]):

2ikn0Cz 1 Cxx � k2n4
0rE0eC , (2)

where k is the vacuum wave vector and I � jCj2. In the
case of nonlocal dependence e�I�, Eq. (2) does not possess
the Hamiltonian structure, which creates serious problems
for analytical treatment.

The modified beam propagation method (BPM) [15]
was used to solve numerically Eq. (2) in conjunction with
Eq. (1). For n0 and r we used the values 2.5 and 5 pm�V
representative for the sillenites. The results of our calcu-
lations for the distributions I�x, z� and dn�x, z� are shown
in Figs. 2a and 2b. The chosen incident peak intensity and
beam width are I0 � 10 and d � 36 mm, the propaga-
tion distance z0 � 6 mm. This distance exceeds consid-
erably the characteristic nonlinear length for the intensity
changes, �kn3

0rE0�21 � 0.5 mm, thus the depicted spatial
evolution is strongly nonlinear. The solid lines in Fig. 3
are the snapshots of the transverse intensity distribution
for several values of the propagation coordinate z. The
dotted lines show the corresponding profiles for the gra-
dient nonlinear response [dn ~ Ix��1 1 I�] ensuring the
same magnitude jdn�x�jmax at z � 0.

As seen from Figs. 2 and 3, already at a distance z �
1 mm, where the index profile is not yet substantially dif-
ferent from the initial one (the line 4 in Fig. 1), the beam
experiences remarkable changes. It splits into a main cen-
tral beam (it is slightly shifted to the right, larger in the

FIG. 2. Spatial evolution of (a) the light intensity I�x, z� and
(b) the nonlinear refractive index dn�x,z� for an input Gauss-
ian beam. The bright areas correspond to high values of the
variables.
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FIG. 3. Beam profiles (a)–(f) corresponding to propagation
distances z � 0, 1, 3, 4, 5, and 6 mm, respectively.

peak value, and narrower in size as compared to the in-
put beam) and two relatively weak side filaments. These
changes are mainly caused by diffraction at the disconti-
nuity and focusing/defocusing on the negative/positive re-
gions of the initial index profile. This was proven by a
direct simulation of the corresponding linear propagation
problem for a z-independent index.

The subsequent z evolution is strongly nonlinear. It is
characterized by the following basic features: The main
beam (the core) remains of essentially the same width after
the initial compression. Its amplitude pulsates modestly
with z without a significant decrease. The shock wave
of the refractive index does not disappear and does not
branch into multiple shock waves related to the separate
filaments; see Fig. 2b. It runs towards the right with a
roughly quadratic displacement in z. The main beam is
attached to the discontinuity and experiences a permanent
bending. The self-trapping can be considered as the propa-
gation of a nonlinear “surface” wave [2], with the index
discontinuity acting as a light-guiding surface. Note that
the effect of self-bending is known for beam propagation
in PR media with a gradient nonlocal response [12,13].
However, the nonlinear behavior is essentially different
in the gradient case; see the dotted lines in Fig. 3. The
beam does not experience here any trapping and disperses
quickly because of diffraction.

A number of other features of the nonlinear beam propa-
gation are also worthy of attention. The side filaments
evolve in a manner which is strongly different from that
of the main trapped beam. The right filament disappears
soon after its formation owing to the progressive bending
of the main beam. The confluence of this filament with
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the trapped beam, which takes place at z � 4 mm (see
Fig. 2a), is accompanied by a “transient” broadening of
the compound peak, a decreasing amplitude, and increas-
ing bending. The left filament does not experience any
bending. It moves apart from the trapped beam and gradu-
ally disperses because of diffraction. The displacement of
the intensity maximum is remarkably larger than that in
the gradient case.

Basically, the described behavior resembles the forma-
tion of a spatial soliton. The main (trapped) beam does
not show any noticeable decay. The separation of the
side beams is similar to the “emission” of a nonsoliton
part from an initial wave distribution as in the cases
of the famous Korteweg–de Vries and cubic nonlinear
Schrödinger equations [16]. This separation may occur
because the chosen input beam width, d � 36 mm, ex-
ceeds the optimum one for self-trapping. One can expect
on the basis of the data of Fig. 3 that a reduction of d by
a factor of �3 facilitates the establishing of the balance
between self-focusing on the positive segment of the index
profile and diffraction mediated divergence, i.e., reduces
the nonsoliton part of the input intensity distribution.

However, identification of the trapped beam with a soli-
ton would be incorrect. The point is that such a soliton
(if it does exists) must possess not only a narrow core but
also a relatively long tail caused by the presence of the
discontinuity. Stability of this soliton implies obviously a
dynamic balance between the tail and core. It is not ex-
cluded that the trapped beam loses gradually its energy to
maintain the tail and slowly disappears.

To clarify the question of the core stability, we have
performed an additional numerical experiment. Instead of
a fairly wide (d � 36 mm) Gaussian input beam, we used
a �12 mm-wide asymmetric beam possessing a small and
wide left hump. This choice has allowed us to reduce the
filamentation process and energy losses; see Fig. 4a. The
solid lines 1 and 2 in Fig. 4b show the change of the initial
intensity profile after a 4-mm nonlinear propagation. The

FIG. 4. (a) Spatial evolution of an asymmetric input light
beam; (b) beam profiles. The solid lines 1 and 2 correspond to
z � 0 and 4 mm, respectively. The dotted line is plotted for
the gradient response at z � 4 mm.
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dotted line displays the output profile for the case of the
equally strong gradient nonlinear response. One sees that
most of the light energy travels with no divergence and
the trapped power is larger than that for the previous case,
compare with Fig. 3. Furthermore, the difference with the
gradient case, where the light beam quickly disperses, is
even more pronounced than earlier. At the same time, a
slow decrease of the trapped beam amplitude and a slow
accumulation of the energy in the tail is obvious.

In this way propagation of the trapped beam along the
charge singularity has to be associated not with a stationary
but with a metastable long-living state. Correspondingly,
we can speak of a solitonlike beam propagation. Since the
propagation distance of the trapped beam is rather long,
the difference between soliton and solitonlike propagation
can be of minor importance for practical purposes. The
strong distinction of our case from the case of the gradient
response stems from the strong saturation of the function
jdn�I�jmax and the presence of the discontinuity of the
refractive index. These features greatly facilitate beam
trapping.

Let us comment now on the results of a recent study
of beam propagation in ac-biased BSO crystals [17]. The
theoretical part was based on the known relations for the
nonlinear response that are valid only in the low-light-
contrast limit. Within this approach, the formation of
the discontinuity and the effect of strong saturation were
missed. The filamentation of a Gaussian input beam ob-
served experimentally is in line with our results.

It is important to emphasize that the current studies
on PR solitons deal mostly with slow ferroelectric mate-
rials [1]. Changeover to fast materials is vitally impor-
tant for numerous real-time applications. The use of ac
fields makes, as known, the nonlinear response of the sil-
lenites and semiconductors fairly strong [5]. This ac re-
sponse is, however, essentially different from the response
of slow ferroelectrics. A fundamentally different possi-
bility for soliton propagation in fast PR crystals (InP) has
been demonstrated recently in [18].

In conclusion, we have investigated theoretically beam
propagation in a fast PR crystal placed in an ac field to en-
hance the nonlinear response. It has been shown that the
main part of the incident power is trapped near the singu-
larity of the light-induced space charge and can propagate
over fairly long distances with only a weak decay. This
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scenario strongly differs from that known for other types
of PR nonlinear responses.
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