
VOLUME 89, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JULY 2002

033003-1
Asymptotic Behavior of the Kohn-Sham Exchange Potential

Fabio Della Sala* and Andreas Görling
Lehrstuhl für Theoretische Chemie, Technische Universität München, 85747 Garching, Germany

(Received 21 August 2001; published 27 June 2002)

The Kohn-Sham exchange potential of finite systems is shown to approach different asymptotic limits
on nodal surfaces of the energetically highest-occupied orbital than in other regions. This leads to bar-
rier-well structures in the near asymptotic region, which have a strong influence on virtual orbitals and
thus on excitation energies. Common approximations for the exchange potential do not exhibit these fea-
tures. These asymptotic structures, however, can be correctly described by effective exact-exchange meth-
ods. Conditions for the presence of an asymptotic barrier well in the full exchange-correlation potential
are discussed.
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The accuracy and thus the usefulness of the widely em-
ployed Kohn-Sham (KS) method of density-functional the-
ory (DFT) depends on the quality of the approximations
for the exchange-correlation (XC) functionals [1,2]. The
development of such approximate XC functionals for a
long time focused on optimizing the XC energy which
is the crucial quantity in the KS treatment of electronic
ground states. With the introduction of time-dependent
DFT (TDDFT) [3,4] for the treatment of excitation en-
ergies and time-dependent phenomena the quality of ap-
proximate XC potentials became more important because
the latter determine KS orbitals and their eigenvalues, the
input data for TDDFT approaches. There is also a grow-
ing interest in employing KS orbitals and eigenvalues in
procedures combining DFT and standard many-body or
quantum chemistry methods [5,6]. KS orbitals and their
eigenvalues, in particular if unoccupied, depend sensitively
on the XC potential. Common XC potentials are not free
of Coulomb self-interactions, thus do not exhibit the cor-
rect asymptotic behavior [1,2] in finite systems, and result
in qualitatively wrong KS spectra which in turn lead to
large errors in TDDFT methods.

Recently various asymptotically corrected (AC) ap-
proximate XC potentials were developed [7–10] which,
far from the system, approach 21�r with r being the dis-
tance from the center of the nuclear charges. Indeed it was
shown in Refs. [11,12] that for finite systems the KS poten-
tial ys�r� approaches 21�r far outside. The KS potential
is given by ys�r� � ynuc�r� 1 u�r� 1 yx�r� 1 yc�r�
with ynuc�r�, u�r�, yx�r�, and yc�r� representing the
electrostatic potential of the nuclei, the Coulomb poten-
tial, the exchange potential, and the correlation potential,
respectively. Because the electrostatic potential of the
nuclei and the Coulomb potential cancel each other
asymptotically for neutral systems and because the corre-
lation potential is assumed to be short range [12], the KS
and exchange potentials are assumed to exhibit the same
21�r asymptotic behavior in atoms or molecules.

In this Letter we show that this is not true in general.
In directions where the energetically highest-occupied mo-
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lecular orbital (HOMO) has a nodal surface in the asymp-
totic region the exchange potential of molecules is shown
to approach a different value than in other directions. Thus
if the, at first, undefined additive constant contained in
yx�r� is, as usual, chosen such that the exchange poten-
tial approaches 21�r in “normal” directions then it ap-
proaches C 2 1�r on nodal surfaces of the HOMO with
C being a constant. In systems with a degenerate HOMO,
yx�r� approaches C 2 1�r only in the direction where the
sum of the electron densities of all HOMOs is zero in the
asymptotic region. For simplicity we will focus here on
closed shell systems with a nondegenerate HOMO and real
valued orbitals. All results, however, are generally valid.
A nodal surface is a region of zero measure. Therefore
yx�r� approaches C 2 1�r only in regions of zero mea-
sure. However, because the exchange potential, except
for r ! `, is continuous the different asymptotic limits
lead to strong anisotropies and barrier-well structures in
the near asymptotic region which have a strong effect on
the unoccupied KS orbitals. Because present AC exchange
potentials neither exhibit the correct asymptotic limits nor
the anisotropies and barrier-well structures, we here cal-
culate the latter with a recently introduced effective exact-
exchange (EXX) method [13].

As a first step we now show that the assumption that
both ys�r� and yx�r� asymptotically approach 21�r leads
to a contradiction. If ys�r� approaches 21�r for r ! `

then the asymptotic behavior of the KS orbitals fb�rl� with
eigenvalues eb is given by [14]

fb�rl�
rl!`
! e2bbrl . (1)

with bb �
p

22eb on points rl on a line l through the
center of nuclear charges of the molecule. It is sufficient
here to consider in asymptotic expressions only the expo-
nential and to disregard any prefactors containing powers
of r. The orbitals fb shall be occupied KS orbitals which
do not have a nodal surface in the asymptotic region along
the line l. The set of these orbitals shall be called Bl . The
exact-exchange potential yx�r� solves the EXX equation
which can be recast in the form [14]
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occX
a�1

ca��yx�; r�fa�r� � 0 (2)

with

ca��yx�; r� �
allX

ifia

�fajŷx 2 ŷNL
x jfi�

ea 2 ei
fi�r� . (3)

In Eq. (2), ŷNL
x is a nonlocal exchange operator of the form

of the Hartree-Fock exchange operator but constructed
from KS orbitals. The quantity ca��yx�; r� solves the in-
homogeneous differential equation [14]µ

2
=2

2
1 ys�r� 2 ea

∂
ca��yx�; r�

� 2yx�r�fa�r� 1 �ŷNL
x fa� �r� 1 Dafa�r� (4)

with Da � �fajŷx 2 ŷNL
x jfa�.

From the asymptotic decay of the orbitals, Eq. (1), it fol-
lows that the three terms on the right-hand side of Eq. (4)
asymptotically behave as

yx�rl�fb�rl�
rl!`
! yx�rl �e2bbrl , (5)

�ŷNL
x fb� �rl�

rl!`
! e2bMrl , (6)

Dbfb�rl�
rl!`
! e2bbrl (7)

for points on the line l. In Eq. (6), M refers to the ener-
getically highest-occupied orbital in the set Bl . If b fi M
then Eq. (4) asymptotically assumes the formµ

2
=2

2
1 ys�rl� 2 eb

∂
cb��yx�; rl �

rl!`
! e2bM rl . (8)

The asymptotic decay of cb��yx�; rl � is given by the decay
of the particular solution of Eq. (8):

cb��yx�; rl�
rl!`
! e2bMrl , b fi M . (9)

The solutions of the homogeneous equation corresponding
to Eq. (4) do not contribute to cb��yx�; r� and its asymp-
totic decay because one of the homogeneous solutions is
fb which is explicitly excluded from the sum (3) defining
cb��yx�; r� and the other one is exponentially increasing
with ebb rl and cannot be built by the sum (3).

The asymptotic form of cM ��yx�; rl � follows from the
asymptotic form of the EXX equation (2) which leads to

cM��yx�; rl� � 2
1

fM�rl�

X
bfiM

cb��yx�; rl �fb�rl� . (10)

With Eqs. (1) and (9) the asymptotic decay of cM ��yx�; rl �
is given by

cM ��yx�; rl �
rl!`
! e2bM2Krl , (11)

where M 2 K with K $ 1 indicates the second-highest-
occupied orbital in the set Bl. Note that the asymptotic
form of cM ��yx�; rl � cannot be obtained from Eqs. (4)–(7)
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because in this case bb � bM and all three terms given
by the right-hand sides of Eqs. (5)–(7) contribute to the
asymptotic behavior of the right-hand side of Eq. (4) and
it cannot be ruled out that the three terms cancel each other.
Equation (11) shows that this indeed must be the case.

The asymptotic form of the exact-exchange potential is
obtained from Eq. (4) for the orbital M on the line l,

yx�rl � � DM 1
�ŷNL

x fM� �rl�
fM�rl�

2
1

fM�rl�

µ
2

=2

2
1 ys�rl� 2 eM

∂
cM ��yx�; rl � .

(12)

Because of Eqs. (1) and (11) the last term on the
right-hand side of Eq. (12) vanishes asymptotically as
e2�bM2K 2bM �rl . Since �ŷNL

x fM� �rl��fM�rl�
rl!`
! 21�rl

the exact-exchange potential asymptotically behaves as

yx�rl�
rl!`
! DM 2

1
rl

. (13)

Thus the exact-exchange potential yx�r� will approach
the constant DM � �fMjŷx 2 ŷNL

x jfM� on the line l with
M being an energetically highest-occupied orbital in the
set Bl . We now fix the, so far, undefined additive constant
in yx�r� by requiring that DN � �fNjŷx 2 ŷNL

x jfN� �
0 with fN being the HOMO. Then yx�r� approaches
21�r along all directions where fN�r� does not have a
nodal surface in the asymptotic region. Along a direction
r̂N which belongs to a nodal surface of the HOMO, yx

will approach DM 2 1�r, where M indicates the highest-
occupied orbital which does not have a nodal surface in
the asymptotic region in the direction r̂N .

Thus if the KS potential ys exhibits the same asymp-
totic behavior as yx it also must approach DM 2 1�r
along directions r̂N , where the HOMO has a nodal sur-
face in the asymptotic region. This is a contradiction to
the assumption that ys�r� approaches 21�r everywhere
if r ! `. If the correlation potential is short range as
believed [12] and thus does not cancel the exchange po-
tential in the directions r̂N (see also below), then the con-
tradiction is solved if ys indeed approaches DM 2 1�r
along r̂N because the above investigation on the asymptotic
behavior of yx remains valid if, on a line l, the KS poten-
tial ys approaches DM 2 1�r instead of 21�r as origi-
nally assumed. The only change is that, along such a line
l, bb �

p
22�eb 2 DM � instead of bb �

p
22eb (note

that DM . 0 in actual systems). The present results sug-
gest to reconsider earlier work [11,12] on the asymptotic
of ys.

We emphasize that the finding that yx asymptotically
approaches a constant is not a rare special case but is the
case usually encountered in molecules. The HOMOs of
real molecules with more than two electrons have nodal
planes. Only if these nodal planes do not reach into the
asymptotic region can yx asymptotically approach 21�r
033003-2
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everywhere. This, for example, is the case in atoms which
have s orbitals with spherical nodal surfaces as HOMOs.
In the case of degeneracies it may happen that the sum
of the electron densities of the HOMOs is never zero in
the asymptotic region even though the individual HOMOs
have nodal surfaces reaching into the asymptotic region.
An example is noble gas atoms in which the HOMOs are
a set of degenerate p orbitals.

Recently methods to construct the exact-exchange po-
tential of molecules were introduced [15,16]. For finite
systems these methods unfortunately suffer from numeri-
cal problems which prevent an investigation of the asymp-
totic region of the exchange potential. Very recently we
proposed [13] an effective exact-exchange KS method, the
localized Hartree-Fock (LHF) method, which determines
and uses an almost exact-exchange potential, the LHF ex-
change potential yLHF

x �r� given by

yLHF
x �r� � yS

x �r� 1 ycor
x �r� . (14)

In Eq. (14), yS
x �r� is the Slater potential and ycor

x �r� is a
correction term given by

ycor
x �r� �

2
r�r�

occX
�a,b�fi�N ,N�

Cabfa�r�fb�r� , (15)

with Cab � Cba � �fajŷ
LHF
x 2 ŷNL

x jfb� and r�r� de-
noting the electron density. The sum in Eq. (15) runs over
all pairs of occupied orbitals, except the one containing
two times the HOMO. The right-hand side of Eq. (15)
contains in the constants Cab the LHF exchange potential
yLHF

x . Thus yLHF
x has to be determined self-consistently

in the LHF KS procedure. If the terms with a fi b are ne-
glected in Eq. (15) then the approximation of the exchange
potential due to Krieger, Li, and Iafrate (KLI) [17] is
obtained.

The LHF/KLI exchange potential is well suited to inves-
tigate the asymptotic behavior of the exchange potential
of molecules for two reasons: (i) The LHF/KLI exchange
potentials exhibit the same limits for r ! ` as the exact-
exchange potential because the Slater potential always
approaches 21�r, and the correction term [due to the
asymptotic behavior of the orbitals, Eq. (1)] exponentially
approaches zero, except on nodal surfaces of the HOMO
where it approaches DM � CMM . (ii) The asymptotic
region of the LHF/KLI potential can be calculated with
virtually no numerical errors, using a recently introduced
technique [18] based on asymptotic continuations of
orbitals. We here applied it within the program package,
Turbomole [19], to various small and medium sized
molecules. As a representative example, we here discuss
exchange-only results obtained for benzene. The benzene
molecule with D6h symmetry and bond distances of
dC-C � 1.393 Å and dC-H � 1.084 Å is located in the xy
plane with one of the H-C-C-H connection axes located
along the y axis. Results for other molecules and technical
details will be published elsewhere [18].
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FIG. 1. LHF exchange potential of benzene in the yz plane
along lines parallel to the y axis. The dashed lines represent the
AC exchange potential along the same lines.

In Fig. 1 the yLHF
x �r� is plotted along the y axis and

along lines which are obtained by shifting upwards the y
axis parallel in the yz plane to different values of z. Be-
cause in benzene the HOMOs are a set of two degenerate
p orbitals which both have a nodal plane in the molecu-
lar plane, i.e., in the xy plane, the exchange potential yx�r�
must approach a constant in this plane. Indeed Fig. 1
shows that along the y axis yx�r� approaches the constant
value 2.16 eV. Along the other lines displayed in Fig. 1
the HOMOs of benzene do not have a nodal plane and
therefore yx�r� must approach 21�r and eventually zero.
This is indeed the case. However, the exchange potential is
continuous except for r ! `. Therefore the closer a line
lies at the xy plane the later the 21�r behavior is reached
and the longer the behavior of the exchange potential re-
sembles the one on the y axis. As a result barrier-well
structures are formed in the near asymptotic region in the
vicinity of the xy plane, up to a distance of 2.0 a.u. from
the plane. The dashed lines at the bottom of Fig. 1 show
the exchange potential as calculated in AC methods [9]: its
shape is almost the same along the various lines, whereas
the LHF potential strongly changes with z.

Table I displays data on KS eigenvalues of benzene
obtained in exchange-only KS calculations with differ-
ent exchange potentials. The KS spectra obtained with
exchange potentials from the local density approxima-
tion (LDA) [2] and a generalized gradient approximation
(GGA) [20] contain only two bound unoccupied orbitals
due to the completely wrong asymptotic behavior of these
exchange potentials. The AC exchange potential due to
van Leeuwen and Baerends [7] (LB94) leads to a much
improved eigenvalue spectra with a large number of bound
unoccupied orbitals. However, shifts of more than 1 eV
compared to the LHF values are observed. In the last col-
umn of Table I (LHF-AC) we report the shifts in the KS
eigenvalues if the LHF potential in the asymptotic region
033003-3
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TABLE I. KS eigenvalues (eV) for different exchange poten-
tials. Column “LHF” shows LHF eigenvalues; other columns
(for definitions, see text) show differences to LHF values.

´
D´

Sym. Occ LHF LDA GGA LB94 LHF-AC

3a2u 0 20.96 – – 20.15 20.30
4e2g 0 21.03 – – 21.34 21.03
6a1g 0 21.08 – – 20.26 20.50
2e1g 0 21.17 – – 20.38 20.66
5a1g 0 21.59 – – 20.69 20.45
4e1u 0 21.78 – – 21.25 20.82
2a2u 0 21.92 – – 20.39 20.49
4a1g 0 22.64 2.50 2.34 21.11 20.49
1e2u 0 23.92 3.65 3.65 21.28 20.02

1e1g 2 29.16 3.82 3.82 21.01 20.01
3e2g 2 211.10 4.12 3.76 20.40 20.01
1a2u 2 212.00 3.90 3.94 20.85 20.01
· · · 2 · · · · · · · · · · · · 20.01

(as defined in Ref. [18]) is replaced by a 21�r behavior
(the one in Ref. [9]). While the occupied orbital and
the lowest-unoccupied molecular orbital are almost unaf-
fected, all the virtual orbitals are strongly shifted. The
orbitals which do not have a nodal plane in the molecular
plane (e.g., 4e2g, 4e1u� are shifted particularly strong. This
clearly shows that the proper treatment of the asymptotic
region has a strong influence on the diffuse unoccupied
orbital. We calculated excitation energies from LHF or-
bitals using a simple static exchange-only LDA kernel and
we have found good agreement with experiments both for
valence and Rydberg excitation [21], whereas when using
LHF-AC orbitals, the Rydberg excitation energies are sig-
nificantly underestimated. This shows the importance of
LHF asymptotic barrier-well structures for the calculation
of high-lying excitation energies.

The findings of this work can be generalized to the full
XC potential yxc�r�: yxc�r� will asymptotically approach
the constant �fMjŷxc 2 ûMjfM� if

ub�rl�fb�rl� �
dExc

dfb�rl�
rl!`
! e2bMrl . (16)

Condition (16) is the analog of Eq. (6). In order to assess
its validity, we note that, under a quasiparticle approxima-
tion to the linear response of the Sham-Schlüter equation
[22], condition (16) takes the form

Ŝxc�eb�fb�rl�
rl!`
! e2bMrl , (17)
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where Ŝxc�e� is the nonlocal energy-dependent self-energy
operator. Condition (17) is well satisfied for the presently
considered self-energy expressions.

This indicates that asymptotic barrier wells are present
even in the full XC potential.
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