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Repulsive Casimir Forces
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We discuss repulsive Casimir forces between dielectric materials with nontrivial magnetic suscepti-
bility. It is shown that considerations based on the naive pairwise summation of van der Waals and
Casimir-Polder forces may not only give an incorrect estimate of the magnitude of the total Casimir
force but even the wrong sign of the force when materials with high dielectric and magnetic responses
are involved. Indeed repulsive Casimir forces may be found in a large range of parameters, and we
suggest that the effect may be realized in known materials. The phenomenon of repulsive Casimir forces
may be of importance both for experimental study and for nanomachinery applications.
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It is well known that the fluctuations of electromagnetic
fields in vacuum or in material media depend on the bound-
ary conditions imposed on the fields. This dependence
gives rise to forces which are known as Casimir forces,
acting on the boundaries. The best known example for
such forces is the attractive force experienced by paral-
lel conducting plates in vacuum [1]. Casimir forces be-
tween similar, disjoint objects such as two conducting or
dielectric bodies are known in most cases to be attractive
[2] and are sometimes viewed as the macroscopic conse-
quence of van der Waals and Casimir-Polder attraction be-
tween molecules.

In view of the dominance of the Casimir forces at the
nanometer scale, where the attractive force could lead to
restrictive limits on nanodevices [3,4], the study of repul-
sive Casimir forces is of increasing interest.

Repulsive van der Waals forces are known to be possible
if the properties of the intermediate medium are interme-
diate between the properties of two polarizable molecules
[5]. In such cases the Hamaker constant becomes negative,
a property which was successfully employed to explain the
wetting properties of liquid helium [6]. How can one get a
repulsive behavior when the intermediate substance is vac-
uum? A partial answer can be obtained from the observa-
tion that a purely magnetically polarizable particle repels
a purely electrically polarizable particle [7]. Motivated by
this result, Boyer, following Casimir’s suggestion, studied
interplane Casimir force with one plate a perfect conduc-
tor while the other is infinitely permeable. He showed that
in this case the plates repel [7]. This problem was recon-
sidered since in [8,9]. However, one must note that for
most molecules the magnetic polarizability is negligible
compared to the electric polarizability. Indeed, in many of
the treatments of the subject it is assumed that the van der
Waals interaction is dominated by the dielectric behavior
of the materials. If one then considers the pairwise sum-
mation of van der Waals and Casimir-Polder forces as an
approximation to the force between materials, the result is
generally attractive.

Calculations of the interaction between macroscopic
bodies by summation of pair interactions are based on
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the assumption of additivity of the interatomic interaction
energies, which is justified only within second order
perturbation theory [10]. It was pointed out by Axilrod
and Teller [11] that many-particle interactions may lead
to substantial corrections to the so-called “additive”
result. Sparnaay [12] estimated the corrections for some
simple many-body systems to be as large as 30%. These
corrections are usually taken to affect the magnitude of
the force but not its sign.

In this Letter we emphasize that for materials with high
magnetic susceptibility pairwise summation is no longer
a good approximation for the macroscopic Casimir force,
due to the collective response of the material. Indeed,
we show that these considerations may not only give an
incorrect estimate of the magnitude of the force but in
some cases even of its sign. Thus restrictions imposed
on the sign of the force from pairwise consideration can
be misleading, and repulsive forces can be expected in a
wider range of dielectric-magnetic materials. We study the
Casimir force between materials with general permittivity
and permeability and show that, for large permeability and
permittivity, the transition between attractive and repulsive

behavior depends only on the impedance Z �
q

m

e . In
addition we show that at high temperatures there is always
attraction, and thus in some cases the force changes sign
as the temperature is increased.

We start by examining the pair interaction. The Casimir-
Polder potential between two polarizable particles A and
B is given by [13,14]

U�r� � 2
h̄c

4pr7
�23�aA

EaB
E 1 aA

MaB
M �

2 7�aA
EaB

M 1 aA
MaB

E �� , (1)

where aE , aM are the electric and magnetic polarizabil-
ity of the particles. From this equation it is immediately
apparent that repulsion between particles can be obtained.
For example, a purely electrically polarizable particle will
repel a purely magnetically polarizable particle. What does
this tell us about materials described by a given permittiv-
ity and permeability?
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As an illustration of the subtle character pairwise sum-
mations may have we consider two materials with per-
meability and permittivity, ei, mi �i � 1, 2�. When one
considers two polarizable balls in vacuum [15] the co-
efficient of the force can be read from (1) to be of the
form

FC ~ 223
e1 2 1
e1 1 2

e2 2 1
e2 1 2

2 23
m1 2 1
m1 1 2

m2 2 1
m2 1 2

1 7
e1 2 1
e1 1 2

m2 2 1
m2 1 2

1 7
e2 2 1
e2 1 2

m1 2 1
m1 1 2

. (2)

To simplify the last expression we set m1 � 1. In this case

FC ~ 2
e1 2 1
e1 1 2

µ
23

e2 2 1
e2 1 2

2 7
m2 2 1
m2 1 2

∂
. (3)
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It can easily be shown that for e2 .
37
16 the force (3) is

negative for any m2, and thus two such balls attract. Thus
if one regards the two materials to be made of such “balls,”
and use as an approximation to the Casimir force summa-
tion of pairs of these, one comes to the conclusion that
there is attraction whenever e2 .

37
16 and m1 � 1. Next,

however, looking at the whole Casimir energy we demon-
strate that this last statement is wrong.

The Casimir interaction between two polarizable ma-
terials can be conveniently expressed in terms of the re-
flection coefficients at the boundaries ([3,16]). A general
expression for the Casimir energy in planar geometry was
obtained in Ref. [16]. Following [16] it is convenient to
parametrize the field modes using k � �kx, ky , kt�, where
kt is defined by a Wick rotation kt $ iv [17]. In terms
of k the Casimir energy per unit area of two infinite slabs
separated by a distance a is given by
EC �
1
2

Z d3k
�2p�3

�ln�1 2 r�e1, m1�r�e2,m2�e22ajkj� 1 ln�1 2 r�m1, e1�r�m2, e2�e22ajkj�� , (4)
where the two terms on the right correspond to TE and
TM modes, respectively. Here r�e, m� for the TE mode is
given by

r�e, m, u� �

q
em cos2�u� 1 sin2�u� 2 mq
em cos2�u� 1 sin2�u� 1 m

, (5)

and a similar expression with e $ m holds for the TM
mode [i.e., rTM�e,m� � rTE�m, e�] r�e, m, u� is related to
the usual reflection coefficient at the interface between vac-
uum and a medium with given e and m (see, for example,
Eq. 7.39 in [18]) by adapting it to our notations (in par-
ticular our u is not the usual angle of incidence, although
it can be related to it). Hence the energy is given by

EC �
1

8p2

Z p

0
du sinu

Z `

0
dk k2

3 �ln�1 2 r�e1, m1�r�e2, m2�e22ak� 1 e $ m� .

(6)

The k integration can be done by expanding the logarithm
and integrating term by term to obtain

EC � 2
1

32p2a3

Z p

0
Li4�r�e1, m1, u�r�e2, m2, u��

3 sinu du 1 e $ m , (7)

where Li4�x� �
P`

n�1
xn

n4 is a polylogarithmic function.
In Fig. 1 we show positive and negative domains of the

Casimir energy (7). Note that the condition e2 ,
37
16 is not

fulfilled in the repulsive regime, contradicting the argu-
ment given above based on the pairwise attraction picture.
Thus determination of the sign of the Casimir force in the
general case must involve the full expression (7), which
predicts large repulsive regimes.

Although the full expression for the energy (7) is quite
complicated, there is a simple statement to be made re-
garding the direction of the force: The border line be-
tween repulsive and attracting regimes for large values in
the e1, m1 plane (as seen in the figures) is always linear,
i.e., of the form e1

m1
! const when �e1, m1� ! `. This can

be seen from the following argument: for large m and e

we have
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FIG. 1. Repulsive and attracting regions: �a� in the e2, m2
plane for e1 � 2 and m1 � 1 and �b� in the e1, e2 plane m1 � 1
and m2 � 20.
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r�e, m, u� �

q
e

m jcos�u�j 2 1q
e

m jcos�u�j 1 1
(8)

(and a similar expression holds for e $ m). Thus in this
limit the Casimir energy (7) can be written as a function of
e

m and vanishes for a certain value of this ratio. Note that
one doesn’t have to use very high values of the permittivity
and permeability for the approximation (8) to be valid
[see, for example, Fig. 1(a)], since the terms we omit are
reduced by factors of 1

m or 1
e .

We now point out several particular cases:
(i) When both of the materials have high permeability

and permittivity, one can use the approximation (8) for
033001-3
both materials. To get an idea about the sign, we approxi-
mate the Casimir energy (7) by calculating the integral us-
ing just the first term in the polylogarithmic function and
obtain

EC � 2
1

16p2a3

∑
2 1 I�Z1, Z2� 1 I

µ
1
Z1

,
1
Z2

∂∏
, (9)

where Zi �
q

mi

ei
are the impedances of the materials and

I�Z1, Z2� � 2Z21Z1

Z22Z1
�Z1 ln� 1

Z1
1 1� 2 Z2 ln� 1

Z2
1 1��. The

border curve defined by EC�Z1, Z2� � 0 is shown in Fig. 2.
(ii) If one of the bodies is a perfect conductor then for

large m and e the Casimir energy is given by
EC �
21

32p2a3

Z p

0
Li4�r�e1, m1, u�� 1 Li4�2r�m1, e1, u�� sinu du

�
21

16p2a3

Ω
14
8Z1

ln�Z1 1 1� 1
3
8

∑
1 2 6Z1 ln

µ
1 1

1
Z1

∂∏æ
, (10)
where the first two terms in the Li4 series where used. In
this case for high permeability and permittivity the transi-
tion from an attractive to a repulsive regime takes place at
Z1 � 1.037, i.e., m � 1.08e.

(iii) The Casimir energy (7) can be most easily analyzed
in the uniform velocity of light (UVL) case [19]. In this
case the reflection coefficients (5) are independent of the
angle, namely, r�e, m� �

12m

11m . This makes the u integral
in (7) trivial, with the result

EC �
1

8p2a3 Li4

∑µ
1 2 m1

1 1 m1

∂ µ
1 2 m2

1 1 m2

∂∏
. (11)

This result agrees with the result obtained in [22] for a di-
lute medium (i.e., jmi 2 1j ø 1 for i � 1, 2). In this case
the force becomes repulsive if m1 . 1 and m2 , 1 or vice
versa. However, the condition e �

1
m then implies that one

of the materials will have e�v� , 1 on the imaginary axis
which can be shown to be inconsistent with general prop-
erties of the dielectric function of a realistic material [23].
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FIG. 2. Repulsive and attracting regions in the Z1, Z2 plane.
The leading term in the high temperature expansion for
the free energy is obtained in the usual procedure by re-
taining only the zero Matsubara frequency [i.e., replacingR d3k

�2p�4 by kBT
R dkxdky

�2p�2 in (4)]. Note that, in our mode
parametrization, zero frequency corresponds to u � 90±

in (5) which greatly simplifies the integration. We find

FC � 2
kBT

16pa2

∑
Li3

µ
1 2 m1

1 1 m1

1 2 m2

1 1 m2

∂

1 Li3

µ
1 2 e1

1 1 e1

1 2 e2

1 1 e2

∂∏
. (12)

This expression leads to an attractive force for any values
of the permeability and permittivity provided mi , ei . 1
�i � 1, 2�. Thus even if at low temperature we have
repulsion the force will change sign as we heat the
system. However, the sign change is at temperature
scales of kBT � h̄c

4pa which at 100 nm is of the order of
1000± K. This phenomenon can be qualitatively explained
as follows: The dominant contribution to the free energy
at high temperatures is due to static configurations (zero
modes), since contributions from other Matsubara fre-
quencies are exponentially suppressed. In particular the
magnetic-electric interactions are nonstatic by nature
(there is no static interaction between a magnetic dipole
and an electric dipole). As a result the magnetic-electric
parts of the interaction which are responsible for repulsive
behavior [see Eq. (1)] will vanish in the high temperature
limit [24].

In view of the growing interest and possibilities of mea-
suring the Casimir effect [3,4,25–27] we wish to point out
some advantages that repulsive Casimir forces might have
for actual measurements: There is no problem of stiction,
i.e., even for very close separations, the materials don’t col-
lapse on each other, in contrast to the usual effect where it
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can sometimes be difficult to hold them apart, a property
which might be crucial for construction of nanomachines.
Moreover it might be an easier task to align two materi-
als in parallel, since this will be their natural tendency (in
places where the two materials get closer, the repulsion is
stronger). We would also wish to note, that although it
is true that for many materials the magnetic response is
negligible, there are classes of materials with high perme-
ability, such as ferrites and garnets (notably YIG) which
may be suitable for constructing a demonstration of repul-
sive Casimir forces.

We conclude by briefly summarizing the main novel re-
sults of this Letter: Repulsive Casimir forces are predicted
for pairs of materials depending on their permeabilities and
permittivities. In some cases estimation of the Casimir in-
teraction by considering only two-body forces may indi-
cate attraction between materials while the total Casimir
force is repulsive. A generalized expression is given for
the Casimir energy for arbitrary values of the permeabili-
ties and permittivities of two parallel materials. For large
values of the permeability and permittivity, the force de-
pends only on the surface impedance. (This should lead
to a convenient characterization of materials suitable for
demonstrating repulsive Casimir forces.) However, even
in the repulsive case, in the high temperature limit there is
always attraction, thus the force will change direction as
the temperature is raised.
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