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What Does the Free Space LL Interaction Predict for LL Hypernuclei?
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Data on LL hypernuclei provide a unique method to learn details about the strangeness S � 22
sector of the baryon-baryon interaction. From the free space Bonn-Jülich potentials, determined from
data on baryon-baryon scattering in the S � 0, 21 channels, we construct an interaction in the S � 22
sector to describe the experimentally known LL hypernuclei. After including short-range (Jastrow) and
RPA correlations, we find masses for these LL hypernuclei in a reasonable agreement with data, taking
into account theoretical and experimental uncertainties. Thus, we provide a natural extension, at low
energies, of the Bonn-Jülich one-boson exchange potentials to the S � 22 channel.
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INTRODUCTION

In past years a considerable amount of work has been
done both in the experimental and the theoretical aspects
of the physics of single and double L hypernuclei [1]. Be-
cause of the lack of targets, the data on LL hypernuclei
provide a unique method to learn details on the strangeness
S � 22 sector of the baryon-baryon interaction. Ground
state energies of three (the production of 4

LLH has been
recently reported [2]) LL hypernuclei, 6

LLHe, 10
LLBe,

and 13
LLB, have been measured. The experimental bind-

ing energies, BLL � 2�M�A12
LL Z� 2 M�AZ� 2 2mL�, are

reported in Table I. Note that the 6
LLHe energy has been

updated very recently [3] in contradiction to the old one,
BLL � 10.9 6 0.8 MeV [7]. The scarce hyperon-nucleon
(YN ) scattering data have been used by the Nijmegen
(NJG), Bonn-Jülich (BJ), and Tübingen groups [1] to de-
termine realistic YN and thus also some pieces of the YY
interactions. In Ref. [8] an effective LL interaction, with a
form inspired in the one-boson exchange (OBE) BJ poten-
tials [9], was fitted to data, and the first attempts to compare
it to the free space one were carried out. Similar studies
using OBE NJG potentials [10] have been also performed
in Ref. [11] and the weak decays of double L hyper-
nuclei have been studied in Ref. [12]. Short range correla-
tions (SRC) play an important role in these systems [8], but
despite their inclusion the effective LL interaction, fitted
to the LL-hypernuclei data, significantly differs from the
free space one deduced in Ref. [9] from scattering data.
In this Letter we consider the new datum for He and, im-
portantly, the effect of the long range nuclear correlations
(RPA) is also incorporated. Starting from the free space
BJ interactions, we find a good description of the masses
of He, Be, and B LL hypernuclei. This has never been
achieved before despite the use of different LL free space
interactions [13]. The BJ set of potentials used here and
the new NJG (NSC97e,b [10]) interactions are similar in
shape, though the latter ones are shifted around 0.2 fm to
larger distances as compared to the BJ potentials. Because
of the difficulty of including RPA effects in NJG models,
0031-9007�02�89(3)�032501(4)$20.00
and since both sets of interactions give similar energies in
the absence of nuclear effects, in this work we have used
BJ-type potentials.

MODEL FOR LL HYPERNUCLEI

Variational scheme: Jastrow type correlations.—Fol-
lowing the work of Ref. [8], we model the LL hyper-
nuclei by an interacting three-body LL 1 nuclear core
system. Thus, we determine the intrinsic wave function,
FLL��r1, �r2�, and the binding energy BLL, where �r1,2 are
the relative coordinates of the hyperons with respect to the
nucleus, from the intrinsic Hamiltonian

H � hsp�1� 1 hsp�2� 1 VLL�1, 2� 2 �=1 ? �=2�MA , (1)

where hsp�i� � 2 �=2
i �2mA 1 VLA�j�rij�, MA and mA are

the nuclear core and the L-core reduced masses, respec-
tively. The L-nuclear core potential, VLA, is adjusted to
reproduce the binding energies, BL �. 0�, of the corre-
sponding single-L hypernuclei [8], and VLL stands for
the LL interaction in the medium. Because of the pres-
ence of the second L a dynamical reordering effect in
the nuclear core is produced. Both the LL free interac-
tion and this reordering of the nuclear core, contribute to
DBLL � BLL 2 2BL. However, the latter effect is sup-
pressed with respect to the former one by at least one
power of the nuclear density, which is the natural parame-
ter in all many body quantum theory expansions. We as-
sume the nuclear core dynamical reordering effects to be
around 0.5 MeV, as the findings of the a-cluster models of
Ref. [14] suggest, for He, Be, and B LL hypernuclei, and
negligible for medium and heavy ones. This estimate for
the size of the theoretical uncertainties is of the order of
the experimental errors of BLL reported in Table I. Fur-
thermore, the RPA model used below to determine VLL

accounts for particle-hole (p-h) excitations of the nuclear
core and thus it partially includes some nuclear core re-
ordering effects.

In Ref. [8], both Hartree-Fock (HF) and Variational
(VAR), where SRC can been included, schemes to solve
© 2002 The American Physical Society 032501-1
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TABLE I. Binding energies BLL (MeV). Experimental values taken from Refs. [3] (He), [4,5] (Be), and [5,6] (B). We show
theoretical results with and without RPA effects and with different treatments of the f-exchange LL potential. The used BL values
are 3.12, 6.71, 11.37, 18.7, 22.0, and 26.5 MeV.

Without RPA With RPA
LfLL (GeV) LfLL (GeV)

B
exp
LL

Without f 1.5 2.0 2.5 Without f 1.5 2.0 2.5

6
LLHe 7.2510.38

20.31 6.15 6.22 6.53 6.84 6.34 6.41 6.83 7.33
10

LLBe 17.7 6 0.4 13.1 13.2 13.7 14.2 14.5 14.6 15.5 16.8
13

LLB 27.5 6 0.7 22.5 22.6 23.2 23.8 24.2 24.2 25.4 27.0
42

LLCa · · · 37.2 37.3 37.7 38.1 38.3 38.2 39.1 40.1
92

LLZr · · · 44.1 44.2 44.4 44.7 44.6 44.7 45.2 46.0
210
LLPb · · · 53.1 53.1 53.3 53.4 53.4 53.4 53.7 54.1
the Hamiltonian of Eq. (1) were studied. In both cases,
the nuclear medium effective LL interactions fitted to
data were much more attractive than that deduced from the
free space YN scattering data. Since the LL interactions
obtained by s-v exchanges behave almost like a hard
core at short distances, the VAR energies are around
30%–40% lower than the HF ones (see Fig. 4 and Table 9
of Ref. [8]). Hence, trying to link free space to the
effective interaction, VLL, requires the use of a variational
approach where r12 correlations (SRC) are naturally con-
sidered. We have used a family of 1S0 LL wave functions
of the form FLL� �r1, �r2� � NF�r12�fL�r1�fL�r2�xS�0,
with xS�0 the spin singlet, �r12 � �r1 2 �r2, and

F�r12� �

√
1 1

a1

1 1 � r122R
b1

�2

!
3Y
i�2

�1 2 aie
2b2

i r12 � , (2)

where a1,2,3, b1,2,3, and R are free parameters to be de-
termined by minimizing the energy, N is a normalization
factor, and fL is the s-wave L function in the single-L
hypernucleus A11

LZ. This VAR scheme differs appreciably
from that used in Ref. [8]. There, FLL� �r1, �r2� was ex-
panded in series of Hylleraas type terms whereas here we
have adopted a Jastrow-type correlation function. Hyller-
aas SRC, though suited for atomic physics, are not effi-
cient to deal with almost hard core potentials, as is the
case here. Thus, to achieve convergence in Ref. [8] a total
of 161 terms (161 unknown parameters) were considered.
The ansatz of Eq. (2), which has only seven parameters
and thus leads to manageable wave functions, satisfacto-
rily reproduces all VAR results of Ref. [8].

LL interaction in the nuclear medium.—The poten-
tial VLL represents an effective interaction which accounts
for the dynamics of the LL pair in the nuclear medium,
but which does not describe their dynamics in the vac-
uum. This effective interaction is usually approximated by
an induced interaction [15] (V ind

LL) which is constructed in
terms of the LL ! LL �GLL�, LN ! LN �GLN �, and
NN ! NN �GNN� G matrices, as depicted in Fig. 1. The
induced interaction, V ind

LL combines the dynamics at short
distances (accounted by the effective interaction GLL) and
the dynamics at long distances which is taken care of by
means of the iteration of p-h excitations (RPA series)
032501-2
through the effective interactions GLN and GNN . Near
threshold (2mL), the S � 22 baryon-baryon interaction
might be described in terms of only two coupled channels
LL and JN . For two L hyperons bound in a nuclear
medium and because of Pauli blocking, it is reasonable to
think that the ratio of strengths of the LL ! JN ! LL

and the diagonal LL ! LL (with no JN intermediate
states) transitions is suppressed with respect to the free
space case. This is explicitly shown for 6

LLHe in Ref. [16],
though a recent work [17], using a NJG model, finds in-
creases of the order of 0.4 MeV in the calculated BLL

values, for He, Be, and B LL hypernuclei, due to JN
components. In any case 0.4 MeV is of the order of the
experimental and other theoretical uncertainties discussed
above, and we will assume that the data of LL hypernuclei
would mainly probe the free space, V free

LL , diagonal LL

element of the LL 2 JN potential. Hence GLL might
be roughly approximated by V free

LL , and the interaction VLL

can be split into two terms VLL � V free
LL 1 dVRPA

LL , where
the first one accounts for the first diagram of the right-hand
side (rhs) of Fig. 1 and dVRPA

LL does it for the remaining
RPA series depicted in this figure. Let us examine in detail
each of the terms.

Free space LL interaction: We use the BJ models for
vacuum NN [18] and YN interactions [9] to construct
the free space diagonal LL potential. We consider the
exchange between the two L hyperons of s �I � 0,
JP � 01�, v, and f �I � 0, JP � 12� mesons. The free
space LL potential, V free

LL , in coordinate space (nonlocal)
and for the 1S0 channel, can be found in Eqs. (24) and
(25) of Ref. [8] for s and v exchanges, respectively. The
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FIG. 1. Diagrammatic definition of V ind
LL .
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f-exchange potential can be obtained from that of the
v exchange by the obvious substitutions of masses and
couplings. Besides, monopolar form factors are used
[9,18], which leads to extended expressions for the po-
tentials [see Eq. (19) of Ref. [8] ]. In the spirit of the BJ
models, SU(6) symmetry is used to relate the couplings
of the v and f mesons to the L hyperon to those of
these mesons to the nucleons. We adopt the so-called
“ideal” mixing angle (tanuy � 1�

p
2 ) for which the

f meson comes out as a pure ss̄ state and hence one
gets a vanishing fNN coupling [18]. This also deter-
mines the fLL couplings in terms of the vLL ones.
Couplings (gsLL, gvLL, fvLL) and momentum cutoffs
(LsLL, LvLL� appearing in the expression of the s- and
v-exchange LL potentials can be found in Table 2 of
Ref. [8] which is a recompilation of model Â of Ref. [9],
determined from the study of YN scattering. The f meson
couplings are given in Eq. (65) of Ref. [8]. Because the
f meson does not couple to nucleons, there exist much
more uncertainties on the value of LfLL. Assuming that
this cutoff should be similar to LvLL and bigger than the
f meson mass, we have studied three values, 1.5, 2, and
2.5 GeV.

RPA contribution to the LL interaction: Here, we per-
form the RPA resummation shown in the rhs (from the
second diagram on) of Fig. 1. We will do first in nuclear
matter and later in finite nuclei.

(1) Nuclear matter: Let us consider two L hyperons in-
side a noninteracting Fermi gas of nucleons, characterized
by a constant density r. The series of diagrams we want to
sum up correspond to the diagrammatic representation of
a Dyson type equation, which modifies the propagation in
nuclear matter of the carriers (s, v, and f mesons) of the
strong interaction between the two L’s. This modification
is due to the interaction of the carriers with the nucleons.
Because in our model the f meson does not couple to nu-
cleons, its propagation is not modified in the medium and
will be omitted in what follows. The s-v propagator in
the medium, D �Q�, has been already studied in the con-
text of Fermi liquids in Ref. [19] and it is determined by
the Dyson equation

D �Q� � D 0�Q� 1 D 0�Q�P�Q�D �Q� , (3)

D 0�Q� �

∑
Dv

mn�Q� 0
0 Ds�Q�

#
, (4)

where D 0�Q� is a 5 3 5 matrix composed of the free
s and v propagators, and the P matrix is the medium
irreducible s-v self-energy

P�Q� �

"
Pmn�Q� Pm�Q�
Pm�Q� Ps�Q�

#
, (5)

where Pmn and Ps account for excitations over the Fermi
sea driven by the v and s mesons, respectively, and Pm

generates mixings of scalar and vector meson propagations
in the medium. Obviously, this latter term vanishes in the
vacuum. Having in mind the findings of Ref. [8], V free

LL
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should give us the bulk of VLL, we have performed some
approximations to evaluate P�Q�: (i) We approximate
GLN and GNN in Fig. 1 by the free space diagonal LN
and NN potentials, which are well described by s and
v exchanges in the isoscalar 1S0 channel. The LLs

and LLv vertices were discussed in the previous subsec-
tion, while the NNs and NNv Lagrangians can be found
in Ref. [18]. The corresponding coupling constants and
form factors can be found in Ref. [18] and in Table 3 of
Ref. [8]). (ii) We have only considered p-h excitations
over the Fermi sea. This corresponds to evaluate the dia-
grams depicted in Fig. 2 plus the corresponding crossed
terms which are not explicitly shown there. (iii) We work
in a nonrelativistic Fermi sea and we evaluate the p-h ex-
citations in the static limit.

With all these approximations and taking the four-
momentum transferred between the two L’s, Qm �
�q0 � 0, 0, 0, q�, the elements of the P�0,q� matrix read

Pij�0, q� � U�0,q; r�CNi �q�CNj �q�; i, j � 1, . . . , 5 ,

(6)

where CB�q� � ���gvBB�q�, 0, 0, 0,gsBB�q���� with

gaBB�q� � gaBB
L

2
aBB 2 m2

a

L
2
aBB 1 q2

;

a � s, v; B � L,N . (7)

In the Lindhard function, U�0,q; r�, a finite excita-
tion energy gap is included for particles (see appendix of
Ref. [20]). We use gap values between 1 and 3 MeV to ac-
count for typical excitation energies in finite nuclei, and we
find rather insensitive results. The case of 4He is special
and for it we use a gap value of 20 MeV. Using Eq. (6),
one can invert the Dyson equation, Eq. (3), and thus
one easily gets for the s-v propagator in the medium
D �Q� � ���I 2 D 0�Q�P�Q����21D 0�Q�. With this propa-
gator, the RPA series of diagrams (from the second one
on) of the rhs of Fig. 1 can be evaluated and one gets

dVRPA
LL �q, r� �

5X
ij�1

CL
i �q� �D �Q� 2 D 0�Q��ijCL

j �q�

� U�0, q; r�
�Ws

LN 2 Wv
LN �2

1 1 U�Ws
NN 2 Wv

NN �
, (8)

FIG. 2. p-h excitation contributions to P, Eq. (5).
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where D 0�Q� accounts for the first term of the rhs of
Fig. 1, and it has been subtracted to avoid double counting,
and finally

Wa
BB0 �

gaBB�q�gaB0B0�q�
q2 1 m2

a

. (9)

In the nonrelativistic limit adopted to evaluate dVRPA
LL , and

for consistency, we have neglected the spatial and tensor
(fvLL) couplings of the v meson to the L.

(2) Finite nuclei: The Fourier transform of Eq. (8) gives
the RPA LL nuclear matter interaction, dVRPA

LL �r12, r�, in
coordinate space. It depends on the constant density r. In
a finite nucleus, the carrier of the interaction feels different
densities when it is traveling from one hyperon to the other.
To take this into account, we average the RPA interaction
over all different densities felt by the carriers along their
way from the first hyperon to the second one. Assuming
meson straight-line trajectories and using the local density
approximation, we obtain

dVRPA
LL �1, 2� �

Z 1

0
dl dVRPA

LL ���r12, r�j�r2 1 l�r12j���� ,

(10)

where r is the nucleon center density given in Table 4 of
Ref. [8]. Note that dVRPA

LL �1, 2� depends on r12 and also
on the distance of the L’s to the nuclear core, r1 and r2.

RESULTS AND CONCLUDING REMARKS

Using the numerical constants and the L nuclear core
potentials denoted in Ref. [8] by YNG [21] and by BOY
[22] for He and Be, B, Ca, Zr, Pb, respectively, we ob-
tain the results of Table I, where both the effect of the f

exchange and that of the RPA correlations can be seen.
We have also investigated the dependence of the results on
the fLL couplings (g and f ), by varying both couplings
by 610% around their SU(6) values. We find appreciable
changes of the energies for the two highest values of LfLL.
These changes become greater for variations of ffLL than
of gfLL, increase with A, and are bigger when RPA ef-
fects are considered. For instance, for LfLL � 2.5 GeV
and with RPA the He, Be, and B energies vary in the
ranges 7.05–7.83, 16.0–17.7, and 26.0–28.2 MeV, respec-
tively. Finally, in Table II we present details of F�r12�,
Eq. (2). Our conclusions are as follows: (i) It is not pos-
sible to describe the experimental masses of the LL hy-
pernuclei if RPA effects were not included. (ii) The RPA
resummation leads to a new nuclear density or A depen-
dence of the LL potential in the medium which notably
increases DBLL and that provides, taking into account
theoretical and experimental uncertainties, a reasonable
description of the currently accepted masses of the three
measured LL hypernuclei (see last column of Table I).
This is achieved from a free space OBE BJ potential de-
termined from S � 0, 21, baryon-baryon scattering data.
Hence, our calculation does not confirm the conclusions
of Ref. [13] about the incompatibility of the He, and Be
032501-4
TABLE II. Parameters, in Fermi units, of the function F�r12�
for RPA LfLL � 2.5 GeV LL interaction.

a1 b1 R a2 b2 a3 b3

He 6.51 0.81 0.24 0.91 0.94 0.88 0.98
Be 3.33 0.82 0.44 0.77 1.29 0.88 1.16
B 5.39 0.72 0.43 0.81 1.12 0.84 0.99
Ca 1.75 0.71 0.59 0.90 1.47 0.58 1.41
Zr 2.60 0.74 0.51 0.55 1.61 0.91 1.15
Pb 3.75 0.73 0.47 0.85 0.99 0.75 1.51

and B data. The binding energies of 10
LLBe and 13

LLB might
change if the single hypernuclei produced in Be and B
events were produced in excited states [13]. The modified
Be and B masses would then favor a different set of LfLL

and fLL couplings [see columns 8–10 in Table I and dis-
cussion on SU(6) violations].

We warmly thank C. García-Recio for useful discus-
sions. This research was supported by DGES under Con-
tract No. PB98-1367 and by the Junta de Andalucía.

[1] Proceedings of the International Conference on Hyper-
nuclear and Strange Particle Physics [Nucl. Phys. A585
(1995); A639 (1998); A691 (2001)].

[2] J. K. Ahn et al., Phys. Rev. Lett. 87, 132504 (2001).
[3] H. Takahashi et al., Phys. Rev. Lett. 87, 212502 (2001).
[4] M. Danysz et al., Nucl. Phys. 49, 121 (1963); R. H. Dalitz

et al., Proc. R. Soc. London Sect. A 426, 1 (1989).
[5] G. B. Franklin, Nucl. Phys. A585, 83c (1995).
[6] S. Aoki et al., Prog. Theor. Phys. 85, 1287 (1991).
[7] D. J. Prowse, Phys. Rev. Lett. 17, 782 (1966).
[8] J. Caro, C. García-Recio, and J. Nieves, Nucl. Phys. A646,

299 (1999).
[9] A. Reuber, K. Holinde, and J. Speth, Nucl. Phys. A570,

543 (1994).
[10] Th. A. Rijken, Nucl. Phys. 691, 322c (2001); V. G. J. Stoks

and Th. A. Rijken, Phys. Rev. C 59, 3009 (1999).
[11] E. Hiyama et al., Prog. Theor. Phys. 97, 881 (1997).
[12] A. Parreño, A. Ramos, and C. Bennhold, Phys. Rev. C 65,

015205 (2002); K. Itonaga, T. Ueda, and T. Motoba, Phys.
Rev. C 65, 034617 (2002).

[13] I. N. Filikhin and A. Gal, Phys. Rev. C 65, 041001 (2002);
Nucl. Phys. A (to be published).

[14] A. R. Bodmer, Q. N. Usmani, and J. Carlson, Nucl. Phys.
A422, 510 (1984).

[15] E. Oset, P. Fernández de Córdoba, L. L. Salcedo, and
R. Brockman, Phys. Rep. 188, 79 (1990).

[16] S. B. Carr, I. R. Afnan, and B. F. Gibson, Nucl. Phys. A625,
143 (1997).

[17] T. Yamada and C. Nakamoto, Phys. Rev. C 62, 034319
(2000).

[18] R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149,
1 (1987).

[19] T. Matsui, Nucl. Phys. A370, 365 (1981).
[20] E. Oset, D. Strottman, H. Toki, and J. Navarro, Phys.

Rev. C 48, 2395 (1993).
[21] T. Motoba, H. Bando, T. Fukuda, and J. Zofka, Nucl. Phys.

A534, 597 (1991).
[22] A. Bouyssy, Nucl. Phys. A381, 445 (1982).
032501-4


