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The interstellar medium provides a unique laboratory for highly supersonic, driven hydrodynamic
turbulence. We propose a theory of such turbulence, test it by numerical simulations, and use the results
to explain observational scaling properties of interstellar molecular clouds, the regions where stars are
born.
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1. Introduction.— Stars are formed as a result of gravi-
tational (Jeans) collapse of dense clumps in interstellar
molecular clouds. The structure of such clouds in a large
interval of scales (from about 100 to 0.01 pc) lacks any
characteristic length, and can be understood as arising from
supersonic hydrodynamic motions sustained on large
scales by supernovae explosions [1–3]. A fluid motion
with characteristic large-scale relative velocities y � 1
10 km�s compresses rapidly radiating and therefore
relatively cold molecular gas �T � 10 K� up to very high
densities (above 104 cm23). Instabilities of shock fronts
create a hierarchy of gas clumps with broad mass, size,
and velocity distribution controlled by the Mach number
�M � y�c� and by the Alfvénic Mach number �Ma �
y�ya�, where ya is the Alfvén velocity, ya � B�

p
4pr,

and c is the sound speed. Depending on parameters of
clouds, the Mach number can reach 30 on the largest
scales, and the Alfvénic Mach number can exceed 1 as well
[4–10]. A systematic study of scaling properties of su-
personic turbulence and of the structure of molecular
clouds was initiated by the work of Larson [4,5], but
despite the large number of observational and numerical
investigations that appeared for the last 20 years, the
theoretical understanding of the turbulence has been
rather poor.

In the present paper, we provide a new analytical model
for a supersonic turbulent cascade and test the model
against observations and numerical simulations. We find
a very good agreement within the error bar uncertainty.
The analytical approach is suggested by the following
two numerical findings. First, we establish that for large
Mach numbers �M . 2� the velocity field in the inertial
interval is mostly divergence-free and shear-dominated,
with the intensity of its potential component being only
about 15% of the intensity of its solenoidal part. Second,
the most intense dissipative structures of the turbulence
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are two-dimensional sheets or shocks as opposed to
the incompressible case where the strongest dissipation
occurs in filaments (see also [10,11]). Using these two
ingredients in the framework of the She-Lévêque model
of turbulence, we calculate two-point correlators of
velocity and density fields. This allows us to construct the
multifractal distributions of the velocity and density fields,
which statistically describe the structure of a turbulent
molecular cloud. In the present paper, we present the
analytic derivation of the model and summarize the most
important numerical results. The detailed numerical and
observational analysis will appear elsewhere [12,13].

In the following section, we construct the multifractal
distribution of the velocity field, and numerically check the
first ten velocity-difference structure functions (the defi-
nition is given below). In section 3 we proceed with the
density distribution, derive a general formula for two-point
density correlators, and compare the result with the nu-
merical simulations. Conclusions, applications, and future
research are outlined in section 4.

2. Multifractal model of supersonic turbulence.— In
1994, She and Lévêque suggested a model that turned
out to be very successful in explaining the experimental
findings for incompressible turbulence [14]. The model
represents a turbulent cascade as an infinitely divisible
log-Poisson process [15–17], and has three input parame-
ters. The first two of them are the so-called naive, i.e.,
nonintermittent, scaling exponents of velocity fluctuation
and of the eddy turnover time. The nonintermittent
velocity difference of the eddy of size l scales as yl � lQ ,
and the “eddy turnover” time scales as tl � lD. The third
parameter is the dimension of the most intense dissipative
structure, D. In the incompressible case, the first two
parameters take their Kolmogorov values, D � 2�3,
Q � 1�3, and the third parameter is D � 1 since the
dissipation mostly occurs in elongated filaments.
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The model predicts the structure functions of the veloc-
ity field that are defined as follows:

Sn�l� � �ju�x 1 l� 2 u�x�jn� � lz �n�. (1)

The velocity components in this formula can be either par-
allel or perpendicular to vector l. There is experimental
evidence that both transversal and longitudinal structure
functions scale in the same way [18–20], therefore, we
will not distinguish between them as far as the scaling is
concerned. The She-Lévêque formula gives the following
expression for the scaling exponents of the structure func-
tions:

z �n� � Q�1 2 D�n 1 �3 2 D� �1 2 SQn� , (2)

where S � 1 2 D��3 2 D� [14,21]. In the incompress-
ible case �Q � 1�3, D � 2�3, D � 1�, this expression
has been experimentally verified to work for structure
functions up to the tenth order, within an accuracy of a
few percent [14,18].

To address the supersonic case, we note that in the in-
ertial interval the turbulence is still mostly divergence-free
(Fig. 1), and is dominated by sheared flows. We therefore
leave the Kolmogorov parameters Q and D unchanged.

However, the most dissipative structures of a supersonic
flow are different from the incompressible case. Instead of
filaments, they look similar to shocks or two-dimensional

FIG. 1. Results from numerical simulations of randomly
driven MHD equations with resolution 1283. The ratios of the
potential, Ec, to the solenoidal, Et , part of the velocity field are
presented for the Mach numbers up to M � 10 at the largest
scale. The initial magnetic Mach number has been chosen in
the range Ma � 0.6, . . . , 10, and the numerical integration has
been conducted for several turnover times of the largest eddies,
which was enough to reach the steady state. The isothermal
equation of state was used and the large-scale driving force was
Gaussian, solenoidal, and correlated at a turnover time of the
largest eddy. The detailed description of the numerical setup
can be found in [12]. The scaling relations reported in the
present paper were obtained for M � 10 and Ma � 3.
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dissipative sheets, therefore, D � 2 [12,22]. With such
input parameters, formula (2) is recast as

z �n� � n�9 1 1 2 �1�3�n�3. (3)

Quite remarkably, this formula works with good accuracy
for the numerical simulations, fitting the first ten structure
functions with an error of about 5% (see Fig. 2).

The observational data consistently indicate steeper than
Kolmogorov velocity spectra (see, e.g., [7,9]. Our model
(3) predicts jyk j

2 � k212z �2� � k21.74, which agrees with
observations within error bars (cf. [4,5,7,9]. Interestingly
enough, the average velocity spectrum, originally inferred
from observations by Larson, was k21.74 on scales of or-
der 1 , l , 1000 pc, and k21.76 towards smaller scales,
0.1 , l , 100 pc [4,5].

On the analytical side, model (3) implies the multifrac-
tal distribution of the turbulent fluctuations. Here we dis-
cuss the statistics of the velocity field, and, in the next
section, apply the results to the density field. To visualize
the model, assume that a molecular region (or a simula-
tion domain) contains turbulent structures of various (in
general, fractal) dimensions. In the vicinity of a particular
structure, the velocity difference scales with some particu-
lar exponent that we denote by h, i.e., yh�l� � lh. The
dimension of this fractal structure will be denoted D�h�.
If we divide the space into small boxes of size l, then the

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

FIG. 2. Slopes of transversal structure functions computed for
n � 1, 2, . . . , 10 (correspondingly, from bottom to top), in the
2503 run with M � 10 at the largest scale, and Ma � 3. At the
smallest (viscous) scale, M � 1, this ensures the same super-
sonic regime in the whole inertial interval (cf. Fig. 1). The plot
presents the ratios of the differential slopes of the structure func-
tions to the differential slope of S3�l�; the distance l is plotted in
units of grid points. These ratios, z �n��z �3�, exhibit excellent
scalings, in agreement with the extended self-similarity hypothe-
sis [18]. The averaged numerical values of the ratios are 0.42,
0.74, 1, 1.21, 1.38, 1.52, 1.65, 1.76, 1.89, and 1.99; they are
well described by our formula (3). Note the strong difference
of the scalings of the structure functions from the scalings given
by the Kolmogorov model, z �n� � n�3, by the incompressible
She-Lévêque model, z �n� � n�9 1 2 2 2�2�3�n�3, and by the
Burgers model, z �n� � 1 (see [20]).
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number of boxes covering the fractal structure of dimen-
sion D is proportional to l2D , while the total number of
boxes is proportional to l23. The probability to find our-
selves inside a box covering the fractal with dimension
D�h� is therefore ph�l� � l32D�h�. To average the nth mo-
ment of the velocity difference, we need to sum lnhph�l�,
which is the contribution of one particular fractal structure,
over all the fractal structures. We get

Sn�l� �
X

h

lnh132D�h� � lz �n�. (4)

Knowing D�h� is equivalent to knowing z �n�, these two
functions are related by the Legendre transform as one im-
mediately gets by assuming that l is small, and by evalua-
ting the sum in (4) by the steepest descent method [20].
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For example, knowing z �n� from (3), one can restore D�h�;
we, however, will not need D�h� for our present purposes.

3. Multifractal distribution of the density field.—First,
we derive an important relation of supersonic turbulence.
We start with the Navier-Stokes and continuity equations:

≠tu 1 �u ? ===�u � �h�r�Du 2 c2===r�r 1 f , (5)

≠tr 1 === ? �ru� � 0 . (6)

Let us introduce the density correlator R�t, x� �
�r�x1, t�r�x2, t��, and the density-weighted second-order
velocity structure function, Gik�t, x� � �r�1�r�2� �u�1� 2
u�2�	i �u�1� 2 u�2�	k�, where x � x1 2 x2. Averaging is
performed over the random force. Differentiating R�t, x�
with respect to time, and using (5) and (6), one gets
≠2
t R 1 ===i===kGik 2 c2DR 1 ===i�� f�1� 2 f�2�	ir�1�r�2�� � 2hD===i�u�1�ir�2�� , (7)
where the spatial derivatives are taken with respect to x. In
the inertial interval, the forcing and the viscous terms are
small. In the supersonic regime, one can also neglect the
c2 term. Assuming now that the turbulence is in a steady
state, we are left with a simple equation that must hold
in the inertial interval, ===i===kGik � 0. Because of spatial
isotropy, we get

Gik�x� � Adik 1 g�x2�L2� 1 · · · , (8)

where g� y� is some function vanishing as y ! 0, L is the
external force correlation length, and A is some constant.
In the inertial interval, x ø L, one gets G � const. To
obtain the density distribution, let us make a natural as-
sumption that both the density and the velocity fields have
fixed scalings in the vicinity of the same turbulent struc-
tures. In other words, close to a fractal structure where
the velocity field has scaling h, the density field has some
other, but also constant along the same structure, scaling
a�h�, i.e., rh�l� � la�h�. The condition (8) now reads

G �
X

h

l2h12a�h�132D�h� � const . (9)

The other restriction comes from the mass conservation
law,

�r� �
X

h

la�h�132D�h� � const . (10)

Strictly speaking, our constraint conditions (9) and (10)
are to a certain extent phenomenological. However, we
found them to be consistent with our simulations. More-
over, the theory based on them predicts density correla-
tors rather successfully, which we are going to demonstrate
now. Let us assume that the function a�h� is analytic and
can be expanded as a�h� � a 1 bh 1 gh2 1 . . . . As a
minimal model, consider the case, when a�h� is a linear
function, a�h� � a 1 bh. It turns out that such a linear
ansatz is consistent with both restriction conditions (9) and
(10). As follows from (4), the mass conservation condi-
tion (10) is satisfied with a � 2z �p� and b � p, where
p is arbitrary. The equation for p is then derived from the
dynamic constraint (9), which gives z �2p 1 2� � 2z �p�.
The solution of this equation will be denoted as p0. If
we use our formula (3), p0 can be found exactly; we thus
obtain b � p0 � 2.28 and a � 2z�p0� � 20.82. The
multifractal distribution for the density field, Dr�a�, is
thus related to the multifractal distribution of the velocity
field, Dr�a� � D
�a 1 z �p0�	�p0�. Fractal and multi-
fractal distributions of density fields have indeed been in-
ferred from observations and numerical simulations, see,
e.g., [23–25].

By analogy with the velocity field, the quantities of prac-
tical interest are density correlators. They can be calcu-
lated with the aid of a formula analogous to (4),

��r�x 1 l�r�x�	m� �
X

h

l2ma�h�132D�h� � lj�m�. (11)

Upon substituting the linear expression for a�h� and us-
ing formula (4), one immediately gets j�m� � z �2mp0� 2
2mz �p0�. One thus obtains the density scaling if the ve-
locity structure functions are known either from theory
or from experiment. Since z �n� is a concave function,
j�m� is negative for m . 1�2. For m � 1, 2, 3 the for-
mula gives j�1� � 20.3, j�2� � 21.3, and j�3� � 22.4,
values close to what is obtained in the numerics (see
Fig. 3). Starting from m � 3, the density exponents de-
pend on velocity structure functions of order higher than
13, which cannot be reliably produced with our numeri-
cal resolution. Observationally measured are column in-
tegrated density fields. The scaling exponent of their
correlator is 1 1 j�1� � 0.7, which is in good agreement
with observations [13]. Note that the density correlator
�m � 1� can be thought of as the Larson cloud density–
cloud size relation [5]. Indeed, in the simplest case, when
density is distributed on a single fractal, formula (10)
gives a � D 2 3, and formula (11) gives the same scal-
ing j�1� � D 2 3. The density correlator may thus serve
as a natural generalization of the Larson relation for the
real multifractal case.
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FIG. 3. Density correlators for m � 1, 2, 3. The numerically
obtained slopes are j�1� � 20.3, j�2� � 21.3, and j�3� �
22.1, close to the theoretical prediction (11). The numerical
simulations are the same as in Fig. 1.

4. Conclusions.—We have suggested a self-consistent
model that provides an explanation for numerical and ob-
servational scaling laws of supersonic interstellar medium
turbulence, the so-called Larson’s laws. We conclude with
the following remarks.

(i) The She-Lévêque approach was also applied to
incompressible isotropic MHD turbulence in [21,26,27],
where various scalings were suggested. Most successful
was the approach of Müller and Biskamp [27], where
the energy cascade was assumed to be Kolmogorov-like,
but the dissipation occurred in microcurrent sheets. In
this case, the same formula (3) gave a good agreement
with numerical simulations for structure functions up to
order 8. Our results together with those of Müller and
Biskamp support the ideas put forward in [15] and [16],
that completely different turbulent systems can belong to
the same class of universality, i.e., have the same velocity
scaling exponents. In the anisotropic case of a strong
external magnetic field, the She-Lévêque formalism was
considered in [28].

(ii) Turbulence with small pressure is usually referred
to as Burgers turbulence, the theory of which has been
rapidly developing in recent years (see a review in [29]).
However, the Burgers velocity field is usually assumed to
be potential, which is true in one and two dimensions, but
inconsistent with the 3D case due to strong vorticity gener-
ation. However, our general relation, r�1�r�2� � ju�1� 2

u�2�j2p0l22z �p0�, which is valid inside any correlation func-
tion, can be useful for the closure problems of Burgers
turbulence.

(iii) Our model is consistent with available observa-
tional results, although the error bars of observed velocity
structure functions are too large for a precise comparison.
Moreover, only projected quantities (i.e., integrated along
the line of sight) are observationally available, and there-
031102-4
fore the 3D results should be reformulated for these pro-
jected fields — this is a subject of future work [13].

We are grateful to Peter Goldreich, Dmitri Uzdensky,
and Enrique Vázquez-Semadeni for very useful comments.
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