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Microcanonical Mean-Field Thermodynamics of Self-Gravitating and Rotating Systems
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We derive the global phase diagram of a self-gravitating N-body system enclosed in a finite three-
dimensional spherical volume V as a function of total energy and angular momentum, employing a
microcanonical mean-field approach. At low angular momenta (i.e., for slowly rotating systems) the
known collapse from a gas cloud to a single dense cluster is recovered. At high angular momenta,
instead, rotational symmetry can be spontaneously broken and rotationally asymmetric structures (double
clusters) appear.
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The statistical equilibrium properties of systems of
particles interacting via long-range forces (the so-called
nonextensive systems) are currently the subject of intense
research, both for their highly nontrivial thermodynamics
(displaying such features as negative heat capacities
[1,2]) and for the considerable conceptual and technical
difficulties they present. It is known that the long-range
nature of the potential makes the canonical ensemble
inadequate for describing their statics [3–5], because the
usual thermodynamic limit, where (number of particles)
N ! ` and (volume) V ! ` while intensive variables
are kept fixed, does not exist. A central issue is hence
whether phase transitions and other conventional statistical
phenomena are possible in nonextensive systems [6].

Among nonextensive systems, self-gravitating gases,
i.e., systems of classical particles subject to mutual gravi-
tation, have deserved the most attention. Their usual static
description is based on the microcanonical ensemble [5].
In this framework, the key problem is finding the most
probable equilibrium configuration of a self-gravitating
gas enclosed in a finite three-dimensional box of volume
V as a function of the conserved quantities (integrals of
motion), the simplest (but possibly not the only relevant
ones) being the total energy E and the total angular
momentum L.

Dynamical methods [7] based on fluid-mechanics tech-
niques suggest (see, e.g., [8]) that upon increasing the ratio
between rotational and gravitational energy, the stationary
distribution can change from a single dense cluster to a
double cluster, and that other structures such as disks and
rings might appear.

On the other hand, so far static theories could not re-
cover the richness of the dynamical picture. Taking the
total energy as the only control parameter (see [5] for a re-
view and [9–11] for more recent work and references) after
removing the rotational symmetry artificially, e.g., by con-
straining the system into a nonspherical box, a “collapse”
transition has been found [1], where, as the energy (tem-
perature) is lowered, the equilibrium configuration changes
from a homogeneous cloud to a dense cluster lying in an
almost void background, with an intermediate “transition”
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regime characterized by negative specific heat. Despite
some attempts [12], a detailed static theory embodying an-
gular momentum is lacking.

In this work, building essentially on [8,13], we aim at
bridging the gap between the static and the dynamical ap-
proaches by analyzing the statics of a self-gravitating and
rotating gas in a microcanonical setting including angular
momentum. Within a mean-field approximation, we de-
rive an algebraic integral equation for the density profiles
maximizing the microcanonical entropy and solve it nu-
merically as a function of E and L. Along with the usual
collapse, occurring at low L, we find that for sufficiently
high L the rotational symmetry of the Hamiltonian can be
spontaneously broken, giving rise to more complex equi-
librium distributions, including double clusters, rings, and
disks. The global phase diagram of the system is presented.
We concentrate here on the equilibrium density profiles,
deferring a detailed discussion of the related (highly non-
trivial) thermodynamic picture to a more extensive report.

We consider the N-body system with Hamiltonian

HN � HN ��ri�, �pi �� �
1

2m

NX
i�1

p2
i 1 F��ri�� (1)

with F��ri�� � 2Gm2
P

i,j jri 2 rjj
21. ri , pi, and m

denote, respectively, the position, the momentum, and the
mass of the ith particle. The system is assumed to be
enclosed in a spherical volume V (to preserve rotational
symmetry and ensure angular momentum conservation).
The crucial quantity to be evaluated is the microcanonical
“partition sum”

WN�E, L� �
e

N!

Z
d�HN 2 E�d

√
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NX
i�1

ri 3 pi

!

3 DrDp , (2)

where Dr �
QN

i�1 dri, Dp �
QN

i�1�dpi�h3�, and e is
a constant that makes WN dimensionless. According to
Boltzmann, the entropy is given by

SN �E, L� � lnWN �E, L� . (3)

Our aim is to find the density profiles that maximize SN .
© 2002 The American Physical Society 031101-1



VOLUME 89, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JULY 2002
Following Laliena [13], the integration over momenta
in (2) can be carried out using a Laplace transform. This
yields

WN �E, L� �
A
N !

Z ∑
E 2

1
2

LT �21L 2 F��ri ��
∏�3N25��2

3 Dr , (4)

where A is a constant and � � ���ri�� is the inertia ten-
sor, with elements Iab��ri�� � m

PN
i�1�r2

i dab 2 ri,ari,b�
�a,b � 1, 2, 3�.

In order to evaluate the integral over VN , we use the
following mean-field approximation. Letting r�r� denote
the particles’ density inside V �

R
r�r� dr � N�, we set

F��ri�� ! F�r� � 2
Gm2

2

Z r�r�r�r0�
jr 2 r 0j

drdr0, (5)

Iab��ri�� ! Iab�r� � m
Z

r�r� �r2dab 2 rarb� dr (6)

so that (4) can be recast in the form of the functional
integral

WN�E, L� �
A

N!

Z ∑
E 2

1
2

LT �21L 2 F�r�
∏�3N25��2

3 P�r�dr�r� , (7)

where P�r� is the probability to observe a density pro-
file r � r�r�. To estimate P�r�, we adopt the logic of
Lynden-Bell [8]. We subdivide the spherical volume V
into K identical cells labeled by the position of their cen-
ters. The idea is to replace the integral over V with a sum
over the cells. In order to avoid overlapping we assume
that each cell may host up to n0 particles �1 ø n0 ø N�.
This condition is essentially equivalent to introducing a
hard core for each particle and projects out all the physics
that is expected to play a role at short distances. P�r� is
now proportional to the number of ways in which our N
particles can be distributed inside the K cells with maximal
capacity n0. Denoting by n�rk� the number of particles lo-
cated inside the kth cell, a simple combinatorial reasoning
[8] leads to

P�r� ~ N!
Y

cells k

µ
n0

n�rk�

∂
. (8)

Defining the relative cell occupancy c�r� � n�r��n0, so
that r�r� � Kn0c�r��V , and applying Stirling’s formula
to approximate the factorials [assuming n�rk� ¿ 1 and
n0 2 n�rk� ¿ 1], one obtains

P�c� ~ N! e2�n0K�V�
R

�c�r� logc�r�1�12c�r�� log�12c�r��� dr

� N! e
2�N�Q�

R
�c�x� logc�x�1�12c�x�� log�12c�x��� dx, (9)

where we introduced the dimensionless variable x � r�R
and defined Q �

NV
n0KR3 �

R
c�x� dx.

Plugging this expression into (7) one easily arrives at

WN �E, L� � eSN �E,L� ~
Z

eN�s1�c�1s2�c�� dc�x� , (10)
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where s1 and s2 are given by

s1�c� �
3
2

log
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∏

,

s2�c� � 2
1
Q

Z
�c�x� logc�x� 1 �1 2 c�x�� (11)

3 log�1 2 c�x��� dx .

Notice that � � ��c�. We have neglected terms appearing
in the exponent which do not scale with N .

For large N one can resort to the saddle-point method
to evaluate (10). Variation of the entropy SN with respect
to the relative cell occupancy c, with the constraint on Q

enforced by a Lagrange multiplier m, leads to the station-
arity condition

log
c�x�

1 2 c�x�
� 2

b

Q
U�x� 1

1
2

b�v 3 x�2 2 m

(12)

or, equivalently,

c�x� � �1 1 e�b�Q�U�x�2�1�2�b�v3x�21m�21, (13)

where v is the angular velocity (related to the total angular
momentum by the relation L � �v), and the shorthands
b and U�x� are respectively defined as

b �
3�2

�E 2
1
2LT �21L 2 F�c��

. (14)

U�x� � 2
Z c�x0�

jx 2 x0j
dx0. (15)

The essence of our mean-field approach becomes clear if
we notice that F�c� ~

R
c�x�U�x� dx.

Equations (12) or (13) are our central result. They hold
for any long-range potential F for which our mean-field
approximation can be justified. Functions c�x� solving
them and corresponding to entropy maxima represent our
desired equilibrium distribution of particles. Of course,
for fixed energy and angular momentum there may exist
different solutions, each having its entropy. In such cases,
the higher the entropy the more probable the solution.

Technically, one can only hope to solve, e.g., (13) by
numerical integration. However, the implicit dependence
of U�x� on c�x� via a three-dimensional integral makes this
a formidable task. To simplify things, we pass to spherical
coordinates, x � �x, u, f�, and expand our potential and
relative occupancy in series of real spherical harmonics:

1
jx 2 x0j

�
X̀
l�0

lX
m�2l

4p

2l 1 1
�x _ x0�l

�x ^ x0�l11 Ylm�u, f�

3 Ylm�u0, f0� , (16)

c�x� �
X̀
l�0

lX
m�2l

blm�x�Ylm �u, f�

with x _ x0 � min�x, x0� and x ^ x0 � max�x, x0�.
blm�x� is a radial function whose precise form we shall
soon derive. Using the series (16), together with the
completeness relation for our basis set �Ylm�, one can
easily show that U�x� �

P
l,m ulm�x�Ylm�u, f�, with
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ulm�x� � 2
4p

2l 1 1

Z �x _ x0�l

�x ^ x0�l11
blm�x0� �x0�2 dx0. (17)

Multiplying both sides of (13) by Ylm and integrating over angular variables one finds

blm�x� �
Z

Ylm�u,f� �1 1 e�b�Q�	`
l�0	l

m�2lulm�x�Ylm�u,f�2�1�2�bv2x2 sin2u1m�21 sinu dudf , (18)
where l � 0, 1, . . . and m � 2l, 2l 1 1, . . . , l. The
integral-algebraic system (18) can be solved numerically
as follows. Fixing E and L and starting from a reasonable
initial guess for blm�x�, one can compute ulm�x� from
(17) (one-dimensional integral). Using this, (18) can be
calculated (two-dimensional integral) to obtain a better
form for blm�x�. This scheme can be iterated until conver-
gence. Clearly, numerical calculations must be performed
with a finite number of harmonics. A first reduction is
obtained by excluding odd harmonics from the calculation.
Exclusion of l � 1 fixes the center of mass in the origin,
while absence of higher-order odd harmonics prevents the
formation of asymmetric structures (e.g., two clusters of
different sizes lying at different distances from the origin).
Besides this, from the typical behavior of blm�x� obtained
from the above procedure, shown in Fig. 1, one clearly
sees that blm dies out fast as l increases. Therefore, all
calculations were performed with even harmonics up to
and including l � 16. We set the particles’ masses to 1
and measured energy and angular momentum in units of
GN2�R and �RGN3�1�2, respectively. Solutions of (13) at
fixed E and L were obtained, choosing Q � 0.02 always.
For the sake of simplicity, we took the angular momentum
parallel to the 3-axis.

The resulting phase diagram is reported in Fig. 2. In or-
der to discern pure phases from phase-coexistence regions
(mixed phases), the Hessian of SN , namely,

H �SN � � det

µ
≠

2
ESN

≠E≠LSN

≠L≠ESN

≠
2
LSN

∂
(19)

must be analyzed [2,6]. Indeed, in pure phases one has
H �SN� . 0, while in mixed phases H �SN� , 0. In the
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FIG. 1 (color online). Typical behavior of the radial part blm
as a function of l for m � 2. This plot was obtained for E �
20.18 and L � 0.44.
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latter, the specific heat is negative and statistical ensembles
(microcanonical and canonical) are inequivalent. For low
angular momenta, the system is more likely to be found
in a single dense cluster (SC) at low energies, while for
higher energies the most probable state is a gaseous cloud
(G). The two phases, both pure, are separated by a mixed
phase with negative specific heat where different equally
probable equilibrium configurations coexist. One thus
recovers the usual collapse scenario [1] that is found
in theories without angular momentum. For higher
angular momenta, instead, the most probable equilibrium
configuration is a double cluster (DC, pure phase), al-
though the gas remains the most probable at sufficiently
high energies. A sample of equilibrium density profiles
is shown in Fig. 3. A central issue is clearly that of the
stability of such structures. A detailed analysis will be
given elsewhere; however, rings turn out to be unstable, at
odds with single and double clusters.

The appearance of the previously unobserved double-
cluster solutions at high angular momenta is particularly
remarkable (and stresses again the importance of angular
momentum in self-gravitating systems), because in such a
state rotational symmetry is spontaneously broken. This
is shown explicitly in Fig. 4, where the entropy is plot-
ted as a function of the order parameter I11 2 I22 (mea-
sured in units of NR2), Iab being the components of the
inertia tensor � �a, b � 1, 2, 3�. (We remind the reader
that we chose the angular momentum to be parallel to the
3-axis.) If L � 0 (or in absence of angular momentum)
the system is isotropic �I11 � I22 � I33� and rotational
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FIG. 2. Global phase diagram of the self-gravitating N-body
system with angular momentum. The dashed lines delimit the
region where H �SN � was computed.
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FIG. 3 (color online). Examples of equilibrium distributions
c�x� occurring inside our spherical box. Shown are the contour
plot and, above it, the density profile. The top row corresponds
to low angular momentum: one sees single clusters [lower E,
(a)] and disklike structures [higher E, (b)]. The bottom row
displays some results for high angular momentum: double clus-
ters [lower E, (c)] and rings [higher E, (d)]. L lies along the
vertical axis.

symmetry cannot be broken. When L fi 0, anisotropies
may occur �I33 fi I11, I22� and one can have either rota-
tionally homogeneous �I11 � I22� or rotationally hetero-
geneous �I11 fi I22� solutions. The latter correspond to
double clusters. Indeed, the entropy profile develops two
peaks at nonzero values of I11 2 I22, corresponding to
binary-star systems, with the two stars either aligned on
the 1-axis or on the 2-axis.

Summarizing, we calculated the static equilibrium den-
sity profiles of a self-gravitating and rotating gas using a
microcanonical mean-field approach, showing that the for-
mation of double-cluster structures (previously observed
only through dynamical approaches) can be obtained from
the spontaneous breakdown of a fundamental symmetry
of the Hamiltonian (1). We have presented for the first time
the global phase diagram as a function of the conserved
quantities E and L. The inclusion of angular momentum
in this analysis is absolutely crucial for these results, the
formation of a double-cluster structure being possible only
through the spontaneous breaking of a fundamental sym-
metry of the Hamiltonian (i.e., the rotational symmetry).
However, it goes by itself that the formation and stabil-
ity of stars, double stars, etc. involves forces (e.g., nuclear
and subnuclear) other than Newtonian gravity and hence
031101-4
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FIG. 4. Entropy as a function of the order parameter I11 2 I22
at L � 0.5 and different values of E. The values of E and L
correspond to the four markers �3� shown in Fig. 2.

could require other ingredients than just energy and angu-
lar momentum [14]. The results presented here provide
nevertheless the most detailed static analysis of the prob-
lem to date and bridge the existing gap between static and
dynamical theories. A more exact picture of the situation
could be obtained by introducing correlations, which are
ignored in the present mean-field approach.
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