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Exact Free Energy Functional for a Driven Diffusive Open Stationary Nonequilibrium System
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We obtain the exact probability exp�2LF ����r�x������ of finding a macroscopic density profile r�x�
in the stationary nonequilibrium state of an open driven diffusive system, when the size of the system
L ! `. F , which plays the role of a nonequilibrium free energy, has a very different structure from that
found in the purely diffusive case. As there, F is nonlocal, but the shocks and dynamic phase transitions
of the driven system are reflected in nonconvexity of F , in discontinuities in its second derivatives, and
in non-Gaussian fluctuations in the steady state.

DOI: 10.1103/PhysRevLett.89.030601 PACS numbers: 05.70.Ln, 05.40.–a, 82.20.–w
The behavior of macroscopic systems which carry
steady currents is one of the central problems in nonequi-
librium statistical mechanics [1]. Of particular interest
are stationary nonequilibrium states (SNS) maintained by
contact with infinite reservoirs at the system boundaries
and subjected to bulk driving forces. A paradigm of such
systems is a fluid in contact with a thermal reservoir at
temperature Ta at the top and Tb . Ta at the bottom, for
which gravity supplies the bulk force (the Rayleigh-Bénard
system [2]); the system exhibits dynamic phase transitions
corresponding to the formation of different patterns of
heat and mass flow as the parameters are varied. By
contrast, if Ta . Tb, the system has no instabilities.
These dynamic transitions are not understood, at present,
in terms of a microscopically derived free energy, despite
various promising attempts [3]. In this Letter, we obtain
the analogue of such a free energy for the SNS of a model
system which, despite its simplicity, has some dynamic
transitions due to the combined effects of its contact with
two reservoirs and of a driving field in the bulk. As in
equilibrium, the free energy functional yields the phase
diagram and the probability of macroscopic deviations
from typical behavior, but here, unlike in equilibrium,
it is nonlocal and may be nonconvex. We also find
non-Gaussian fluctuations in the steady state.

We consider the one-dimensional asymmetric simple ex-
clusion process (ASEP) on a lattice of L sites [4,5]. Each
site i, i � 1, . . . ,L, is either occupied by a single particle
(ti � 1) or empty (ti � 0). In the bulk (2 # i # L 2 1),
a particle attempts to jump to its right neighboring site with
rate 1 and to its left neighboring site with rate q (with
0 # q , 1), succeeding if the target site is empty. At the
boundary site i � 1 (i � L), particles jump only to the
right (left). These boundary sites are also connected to
particle reservoirs: If site 1 is empty, it becomes occupied
at rate a (by a particle from the left reservoir); similarly,
if site L is occupied, the particle may jump into the right
reservoir at rate b.

This dynamics produces an SNS for which we calculate
the large L behavior of PL����r�x����� � exp�2LF ����r�x������,
the probability for observing microscopic configurations
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corresponding, in the limit L ! `, x � i�L, to the macro-
scopic density profile r�x�, 0 # x # 1. F ����r�x����� is gen-
erally called the large deviation functional (LDF) in the
mathematical literature [6]; one always has F ����r�x����� $
0, with equality holding only if r�x� � r̄�x�, a typical
density profile in the system, so that atypical profiles are
observed with exponentially small probability for large L.
[Note that for equilibrium systems F ����r�x����� would be
given by the difference in free energies for r�x� and for
r̄�x�.]

We previously [7] considered this model with symmetric
bulk dynamics, i.e., the case q � 1. We obtained there an
exact Fs��r�� which, unlike the free energy in equilibrium,
was nonlocal, reflecting the generic presence of long range
correlations in SNS [8]. Because of the purely diffusive
nature of the bulk dynamics, Fs did not exhibit any phase
transitions. This is quite different from the asymmetric
case considered here which has, due to the driven nature
of the bulk dynamics, not only long range correlations but
also a rich phase diagram including phase transitions and
shocks [4,5,9]. It is thus closer to a real fluid and gives rise
to a correspondingly more complex F ��r��.

Before describing our new results, we summarize some
known properties of the open ASEP [10]. We restrict
ourselves in this paper to a � �1 2 q�ra and b � �1 2
q� �1 2 rb� with 0 # ra, rb # 1; the parameters ra and
rb represent the densities in the left and the right reser-
voirs. For ra � rb � r, the stationary measure is just
a product measure [5,10] with uniform density r, and all
static (i.e., single time) properties of the system, including
F , are the same as for an equilibrium lattice gas with fu-
gacity z � r��1 2 r�. For this system the LDF is given
by [6,7]

Feq����r�x����� �
Z 1

0

∑
r�x� log

r�x�
r

1 ���1 2 r�x���� log
1 2 r�x�

1 2 r

∏
dx .

(1)
Now recall that if an infinite system with ASEP dy-

namics is started in an initial state with a macroscopic
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density profile r�x, 0� � ra for x , X, r�x, 0� � rb
for x . X, then when ra , rb the time-evolved r�x, t�
will maintain a sharp shock moving at velocity V �
�1 2 q� �1 2 ra 2 rb�, while when ra . rb, r�x, t�
will smooth out as in a “fan”: r�x, t� � ra if x # xa�t�,
r�x, t� � ra 1 �rb 2 ra� ���x 2 xa�t��������xb�t� 2 xa�t���� if
xa�t� , x , xb�t�, and r�x, t� � rb if xb�t� # x, with
xa�t� � X 1 �1 2 q� �1 2 2ra�t, a � a,b. In each
case (unless V � 0), the system will attain, as t ! `,
a constant density r̄ in any finite region. This gives an
understanding [9] of the phase diagram shown in Fig. 1 for
the system with open boundaries. For ra , rb , the shock
will move to the right boundary when V . 0, leaving
behind the constant density r̄ � ra (phase A1), and to the
left boundary when V , 0, yielding r̄ � rb (phase B1).
On the line S (V � 0) a typical r̄�x� is no longer constant,
but corresponds to a shock at some point s, uniformly
distributed on �0, 1�, where r̄�x� jumps from ra to rb ,
i.e., r̄�x� � rs�x� 	 raQ�s 2 x� 1 rbQ�x 2 s� with
Q the Heaviside function [10]. This line corresponds
to a first order phase transition, with r̄ discontinuous
across S. For ra . rb (phases A2, B2, and C), one sees
the constant density, ra, rb, or 1�2, which would have
resulted from the fanlike behavior in the infinite system.

We now turn to our new results. The line ra � rb ,
which separates what we will call the shock region ra ,

rb from the fan region ra . rb , is irrelevant for r̄ but
plays a crucial role in the LDF. Defining

h�r,f; r̄ � � r log
r
f

1 �1 2 r� log
1 2 r
1 2 f

1 log
f�1 2 f�
r̄�1 2 r̄�

, (2)

we find, for ra . rb,

F ����r�x��; ra , rb��� � sup
F�x�

Z 1

0
dx h�r�x�,F�x�; r̄� , (3)

FIG. 1. The phase diagram of the open ASEP. Along the first
order transition line S, typical configurations are shocks.
030601-2
where r̄ is given in Fig. 1 and the sup is over all monotone
functions F�x� which satisfy ra $ F�x� $ rb, 0 # x #

1; for ra , rb, again with r̄ from Fig. 1,

F ����r�x��; ra, rb��� � inf
0#y#1

Ω Z y

0
dx h�r�x�, ra; r̄�

1
Z 1

y
dx h�r�x�, rb; r̄�

æ
.

(4)

The fact that the function F�x� in (3) is required to be
monotone makes it depend on the global form of r�x�, as
does y in (4), so F is a nonlocal functional of r�x�. It can
be shown [11] that the optimal F in (3), which we denote
by Fr , is constructed as follows: Let Gr be defined as the
concave envelope of the function

Rx
0�1 2 r� y��dy; then

G0
r�x� is monotone,

Fr�x� � G0
r�x� if rb # G0

r�x� # ra , (5)

and Fr�x� � ra where G0
r�x� $ ra, Fr�x� � rb where

G0
r�x� # rb. Note that Fr�x� need not be continuous;

it will generally consist of strictly decreasing pieces,
where Fr�x� � 1 2 r�x�, flat pieces, where Fr�x� � ra,
Fr�x� � rb , or Fr�x� is obtained from 1 2 r�x� by
a Maxwell construction [the integrals of Fr�x� and of
1 2 r�x� over these intervals being equal], and possible
jumps downward.

Before going on to discuss the derivation of (3) and (4),
we describe some consequences.

(a) It can be verified that F ����r�x��; ra , rb��� $ 0;
equality occurs only when r�x� � r̄ as given in the
phase diagram, except on the first order line S, where it
is the shock (typical) configurations rs�x� which satisfy
F ����rs�x��; ra, rb��� � 0 for all s [ �0, 1�.

(b) F ����r�x��; ra , rb��� given by (3) is a convex func-
tional of r�x� in the fan region ra $ rb , since it is the
supremum over F of

R1
0 h�r,F; r̄� dx with h a locally

convex function of r for every F. This is similar to
what happens in the symmetric case [7]. In the shock re-
gion ra , rb, on the contrary, this is not true; for every
ra, rb there are profiles r�x� near which F is not con-
vex. This is easily verified on the line S where a super-
position r�x� � lrs�x� 1 �1 2 l�rt�x�, s fi t, satisfies
F ����r�x����� . 0 for 0 , l , 1.

(c) The LDF in the fan region ra . rb has similari-
ties besides convexity to that in the symmetric case. In
particular, it is easy to see from (3) that F ����r�x����� $

Feq����r�x�����, where Feq is given by (1) with r replaced
by the appropriate r̄. But in the shock region, ra , rb ,
this inequality is reversed: F ����r�x����� # Feq����r�x����� [as
is clear from (4), since in region B1 (A1), y � 0 ( y �
1) gives Feq����r�x�����]. This is similar to what fluctuat-
ing hydrodynamics predicts for the Rayleigh-Bénard prob-
lem discussed earlier: Fluctuations are decreased when
Ta . Tb (at least when Ta 2 Tb is very small) and are
increased when Ta , Tb , even in the stable conductance
regime [12].
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(d) In the symmetric case discussed in [7], as in an
equilibrium system not at a phase transition (in any dimen-
sion), the probability of small fluctuations about the typical
state can be obtained from Fs as a limit. More precisely,
if we write r�x� � r̄�x� 1

1p
L
u�x� and then expand Fs

to second order (the first order term being zero), we get
a Gaussian distribution for u�x� with covariance C�x, x0�,
where C21�x, x0� � d2Fs�dr�x�dr�x0� evaluated at
r � r̄. This covariance is the suitably scaled micro-
scopic truncated pair correlation [7]. For the asymmetric
case discussed here, the distribution of fluctuations need no
longer be given by the LDF; in fact, d2F �dr�x�dr�x0� is
discontinuous at r̄ � 1�2 in the interior of region C of the
phase diagram, i.e., where ra . 1�2 . rb. Furthermore,
the fluctuations there are no longer Gaussian.

To see this discontinuity in an explicit example, let
r�x� � 1

2 1 eQ�x 2 s�, with rb #
1
2 2 e # ra; here

it is easy to compute F̃ �e� 	 F ����r�x�����. First, Fr�x� �
1 2 r�x� if e . 0 and Fr�x� � 1

2 2 e�1 2 s� if e , 0;
the constancy of Fr for e , 0 is due to the concave en-
velope construction (5). Then from (3) (we give only the
small-e behavior),

F̃ �e� �
Ω

4�1 2 s�e2 1 · · · , if e . 0
4�1 2 s� �1 2

s
2 �e2 1 · · · , if e , 0 . (6)

The discontinuity of ≠2F̃ �e��≠e2 at e � 0 signals that the
fluctuations are anomalous (non-Gaussian). [Note that for
s � 0, ≠2F̃ �e��≠e2 is continuous at e � 0 and is in fact
equal to the inverse of the variance in the total number of
particles [11].]

These non-Gaussian fluctuations can be observed by
considering the total number Ns of particles on lattice sites
in �s, 1�, i.e., sites i with sL # i # L. A calculation [11]
using the results of [13] for the microscopic probabilities
shows that �Ns 2 �1 2 s�L�2��

p
L converges, as L ! `,

to a random variable m with a well-defined but nonsym-
metric (and non-Gaussian) distribution having density

p�m� �
8

ps3�2�1 2 s�2

Z `

0
dt

3 t2e2�t2�s12�2m212mt1t2���12s��. (7)
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This is in contrast with equilibrium systems (not at a
phase transition) for which statistical mechanics [14] pre-
dicts Gaussian fluctuations of the number of particles in a
macroscopic region (the variance being related to the com-
pressibility). For large values of jmj, (7) yields

2 logp�m� �

8<
:

4m2

12s , if m ¿ 1
4m2

�12s� �11s�, if m ø 21 .
(8)

This agrees with the results of a large deviation calcula-
tion [11] of the probability exp�2LF̂ �e�� of observing
mean density 1

2 1 e in the interval �s, 1�, with no other
constraints: The small-e behavior of F̂ �e� agrees with
the large-m asymptotics of (8) under the identification
m �

p
L �1 2 s�e. [Note that (8) differs from (6) because

for (6) a constraint is imposed also in the region �0, s�.]
To obtain F in (3) and (4), we use the exact expres-

sion for the measure provided by the matrix method [5].
However, rather than calculating the probability of a given
macroscopic profile r�x� directly by summing the steady
state probabilities PL�t� over all configurations t corre-
sponding to that profile, as we did for the symmetric case
in [7], we follow here a different path, which has its origin
in an a posteriori observation made in [7]. We noted there
that while Fs����r�x��; ra , rb��� is nonlocal, it possesses a
certain “additivity” property which, if it could have been
established independently, would have yielded Fs. This is
exactly what we do for the ASEP: We first derive an ad-
ditivity property from the matrix representation of PL�t�,
then use the additivity to obtain F . Full details are given
in [11]; here we give only a partial sketch of the arguments.

Let us introduce the LDF F�a,b�����r�x��; ra, rb ��� �
L21 logPL�b2a�����r�x��; ra ,rb ��� for a system of L�b 2 a�
lattice sites in contact with reservoirs at densities ra and
rb . Define

K�ra, rb� � logr̄�1 2 r̄� , (9)

with r̄ given by Fig. 1, and

H�a,b�����r�x��; ra, rb��� 	 F�a,b�����r�x��; ra , rb���
1 �b 2 a�K�ra , rb� . (10)

It is shown in [11] that for ra . rb we have
H�a,b�����r�x��; ra, rb��� � sup
rb#rc#ra

�H�a,c�����r�x��; ra , rc��� 1 H�c,b�����r�x��; rc, rb���� , (11)

while for ra , rb ,

H�a,b�����r�x��; ra, rb��� � min
rc�ra ,rb

�H�a,c�����r�x��; ra, rc��� 1 H�c,b�����r�x��; rc , rb���� . (12)
Equations (11) and (12) are the additivity relations for
the ASEP.

In this Letter, we will sketch a derivation of (11) in the
special case q � 0; for the case q . 0 and the derivation
of (12), see [11]. For a system of L sites, the probability
PL�t� of the configuration t is given by [5]

PL�t� �

rajPL

i�1�Dti 1 E�1 2 ti�� jrb�

raj �D 1 E�Ljrb�

, (13)
where the operators D,E and vectors 
rj, jr� satisfy

DE � D 1 E , (14)


rjE �
1
r


rj, Djr� �
1

1 2 r
jr� . (15)

If (15) is extended to complex values of r, we may write
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the exact additivity formula


rajX0X1jrb�

ra jrb�

�
1

2pi

I �ra 2 rb�dr

�ra 2 r� �r 2 rb�

3

rajX0jr�


ra jr�

rjX1jrb �


r jrb�
, (16)

where X0,X1 are arbitrary polynomials in D and E and the
contour is a circle jrj � R with rb , R , ra. To obtain
(16), note that it suffices to take Xi � EpiDqi , since from
(14) any polynomial in D and E can be written as a sum of
such terms. The cases q0 � 0 or p1 � 0 are immediately
obtained from (15) and the residue calculus; the general
case follows by an inductive argument, as the case q0,p1
can be reduced to the cases q0 2 1,p1 and q0,p1 2 1
using (14) on the left-hand side of (16) and the corre-
sponding identity �1 2 r�21r21 � �1 2 r�21 1 r21 on
the right-hand side.

Now the weights 
rajX0jr��
ra jr� and 
rjX1jrb ��

r jrb� in (16) are polynomials in 1��1 2 r� and 1�r, re-
spectively, with positive coefficients, so that the integrand
has a Laurent series for rb , jrj , ra with positive co-
efficients and, hence, is a convex function of real r for
rb , r , ra; the minimum rmin for such real r (which
must occur since there are poles at r � ra and r � rb)
is a saddle point for the complex integral. Thus, if r�x� is
a given profile and X0 (respectively, X1) is a sum of prod-
ucts of L�c 2 a� [respectively, L�b 2 c�] factors of D or
E consistent with the left (respectively, right) part of this
profile, and we assume that the weights depend exponen-
tially on L, we expect the integral to be dominated by this
saddle point, leading to

1
L

log

rajX0X1jrb�


ra jrb�
� inf

rb#r#ra

Ω
1
L

log

rajX0jr�


ra jr�

1
1
L

log

rjX1jrb�


r jrb�

æ
.

(17)
Using (17), (13), and the fact that, for large L,

L21 log

raj�D 1 E�Ljrb �


ra jrb�
� 2K�ra, rb � , (18)

we obtain (11).
To go from (11) to (3) we divide our system into n parts

of equal length, the kth interval being ��k 2 1��n, k�n�,
k � 1, . . . ,n. Now note that for very large n most of these
intervals must have reservoir densities rk21,rk which are
nearly equal, and that the LDF for these intervals is ap-
proximately given by (1) with r � rk21 � rk . On the
other hand, the total length of the intervals for which this
is not true (corresponding to points of discontinuity in the
function Fr) will approach 0 as n ! `; these considera-
tions lead then directly to (3) in this limit. We pass from
(12) to (4) by a similar process of subdivision, but the ar-
gument is even simpler since each interval except one has
equal reservoir densities.

In conclusion, it would be interesting to know how key
results for our simple model — the additivity (11) and (12)
030601-4
for the LD functions, the suppression or enhancement of
deviations of the density profile from its typical value as
the reservoirs and the internal field cooperate or compete,
and the non-Gaussian fluctuation (7) of the number of par-
ticles in a box of length cL, 0 , c , 1—extend to more
realistic systems, and whether they could be understood by
a dynamical approach, as is done for the symmetric case
in [15].
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