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We compute the entanglement cost of several families of bipartite mixed states, including arbitrary
mixtures of two Bell states. This is achieved by developing a technique that allows us to ascertain the
additivity of the entanglement of formation for any state supported on specific subspaces. As a side result,
the proof of the irreversibility in asymptotic local manipulations of entanglement is extended to two-qubit
systems.
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Developing a theory of entanglement is considered a pri-
ority in the field of quantum information, where quantum
correlations are a precious resource for information pro-
cessing [1]. In particular, the quest for proper entangle-
ment measures has received much attention in recent years
[2]. From the identification and study of properties of such
measures a gain of insight into the nature of entanglement
is expected. In turn, their computation for particular states
provide us with an account of the resources present in those
states.

Two measures of entanglement stand out due to their
physical meaning. Both of them refer to the possibility
of transforming entangled states of a bipartite system by
means of local operations and classical communication
(LOCC). The distillable entanglement [3,4] Ed�r�
quantifies how much pure-state entanglement can be
extracted from r. More specifically, it gives the ratio
M�N in the large N limit, where M is the number of
ebits [i.e., entangled bits, or maximally entangled states
�j00� 1 j11���

p
2 of a two-qubit system] that can be dis-

tilled from the state r≠N using LOCC. The entanglement
cost [3,5] Ec�r� quantifies, instead, the amount of pure-
state entanglement needed to create r. It is defined in the
limit of large N as the ratio M�N , where M is the number
of ebits required to prepare r≠N using LOCC.

The outputs produced so far by entanglement theory
concerning these two entanglement measures include,
among others, the following remarkable results:

(i) All forms of bipartite pure-state entanglement are
equivalent in the asymptotic limit [6], in the sense that
for large N and any bipartite pure state jC�, jC�≠N can
be reversibly converted into ebits. Thus, for pure states
Ed�jC�� � Ec�jC��, with the so-called entropy of entan-
glement E�jC�� denoting the resulting unique measure.

(ii) Two forms of bipartite entanglement, namely free
and bound entanglement [7], have been identified for
mixed states. The first form corresponds to mixed states
that can be distilled, i.e., Ed . 0. Bound entangled states
were defined as those that cannot be distilled into pure-
state entanglement, i.e., Ed � 0, in spite of the fact that
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they cannot be produced [in the nonasymptotic regime]
by just mixing product (i.e., unentangled) pure states.

(iii) Contrary to the pure-state case, the asymptotic ma-
nipulation of some entangled mixed states is irreversible
[8]. This follows from the gap observed between the dis-
tillable entanglement and the entanglement cost, Ed , Ec,
for some mixed states. This phenomenon occurs both for
bound entangled states and for distillable states.

Notice that, as far as mixed states are concerned, the
above results are qualitative [9]. In particular, the en-
tanglement cost Ec has not been computed for any mixed
state. This problem is related to the one of the additivity
of the entanglement of formation Ef�r� [3,12], an auxil-
iary measure that quantifies how much pure-state entangle-
ment — as given by E— is required to create a single copy
of the mixed state r. In particular, it is not known whether
Ef �r≠N � � NEf�r�, which would imply that Ec � Ef .

In this paper we compute the value of the entanglement
cost Ec for all mixed states rV supported on some specific
subspaces V , HA ≠ HB. This is achieved by showing
that the entanglement of formation Ef is additive for the
tensor product rV ≠ s,

Ef �rV ≠ s� � Ef �rV � 1 Ef�s� , (1)

where s is an arbitrary bipartite state, which by iteration
implies Ec�rV � � Ef�rV �. We also present a technique
that allows us to evaluate Ef for some classes of mixed
states.

Our considerations include, in a two-qubit system, a
mixture rp of two Bell states, jF6� � j00� 6 j11���

p
2,

rp � �1 2 p� jF1� �F1j 1 pjF2� �F2j ,

p [ �0, 1
2 � , (2)

for which we obtain

Ec�rp� � H2� 1
2 1

p
p�1 2 p� �, (3)

H2�x� being the Shannon entropy S�x, 1 2 x�. The distil-
lable entanglement of rp reads [13]
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Ed�rp� � 1 2 H2�p� , (4)

and thus Ed�rp� , Ec�rp� for all p [ �0, 1�2�. That is,
even the process of preparing the elementary mixture rp

is irreversible, in that not all the pure-state entanglement
employed can be subsequently recovered by asymptotic
LOCC. This constitutes a new, remarkably simple instance
of the irreversibility that takes place in the asymptotic ma-
nipulation of entanglement.

Mathematically, the entanglement of formation of a
mixed state r [ B �HA ≠ HB� can be expressed as [3,14]

Ef�r� � inf
d[Dr

X
k

pkE�jck�� , (5)

where the entropy of entanglement E�jc�� is given by
S�rA�, rA � trBjc� �cj, and the minimization is per-
formed over the set Dr of all pure-state realizations
d � 	pk , jck�
 of r, r �

P
k pkjck � �ck j. The entangle-

ment cost, in turn, corresponds to [3,5]

Ec�r� � lim
N!`

Ef�r≠N �
N

. (6)

Our first goal is to show the additivity of Ef for some
mixed states rV , as expressed in Eq. (1), which implies
that Ec�rV � � Ef �rV �. For concreteness, we start by dis-
cussing a simple example. After that a theorem announces
the result in its full generality.

Example 1. Let us consider two qubits A and B,
with Hilbert spaces HA � HB � C 2, and a subspace
V , HA ≠ HB spanned by the vectors [15]

j0�V � j0�Aj0�B, j1�V � j1�Aj1�B . (7)

Notice that, in particular, the mixture rp of Eq. (2) is
supported on V , rp [ B�V �. For any vector jf�V [ V ,
jf�V � c0j0�V 1 c1j1�V , we can define a vector jf�A [
HA as jf�A � c0j0�A 1 c1j1�A. Then the operation of
tracing out qubit B

jf�V �fj ! trB�jf�V �fj� �
X

a�0,1

jcaj
2ja�A�aj , (8)

which is a trace-preserving, completely positive (TPCP)
map from B�V � to B �HA�, can also be described as a
TPCP map M from B�HA� to B�HA�,

trB�jf�V �fj� � M�jf�A�fj� , (9)

given by

M �X� �
X

a�0,1

tr�ja�A�ajX� ja�A�aj . (10)

The relevant feature of subspace V is that M is an
entanglement-breaking map [16], as Eq. (10) makes
manifest [17]. The theorem below establishes that this
027901-2
property alone guarantees that Eq. (1) holds for any
rV [ B �V �, and thus Ec�rV � � Ef �rV �. Then we can
use the closed expression for Ef in two-qubit systems
[14] to evaluate Ef �rV �, and thereby obtain, for instance,
the value of Ec�rp� displayed in Eq. (3).

More generally, the theorem considers four arbitrary
quantum systems, denoted A, B, a, and b, and refers to
the entanglement between Aa and Bb. V is a subspace
of HAB such that, for any jC�Vab [ V ≠ Hab, tracing out
subsystem B destroys all existing entanglement between
AB with ab,

trB�jC�Vab�Cj� �
X

l

qljml �A �ml j ≠ jnl�ab�nl j , (11)

that is, such that the map B �V � ! B�HA� given by rV !

trBrV is entanglement breaking [16].
Theorem: Let rV [ B �V � and sab [ B�Hab �. Then

Ef �rV ≠ sab� � Ef �rV � 1 Ef�sab� . (12)

Proof: Notice that Ef �rV ≠ sab� # Ef �rV � 1

Ef �sab�, because from optimal pure-state decompositions
of rV and of sab a (possibly nonoptimal) decomposition
for rV ≠ sab can be constructed with average E given by
Ef �rV � 1 Ef �sab�. In what follows we will show that

Ef �rV ≠ sab� $ Ef �rV � 1 Ef�sab� . (13)

Let us consider a decomposition 	pk, jCk�
 of rV ≠ sab ,

rV ≠ sab �
X
k

pkjCk� �Ckj , (14)

such that it is optimal, that is,

Ef �rV ≠ sab� �
X
k

pkE�jCk�� . (15)

We recall that all jCk� must belong to V ≠ Hab. Next we
argue that in order to prove Eq. (13)—and therefore the
theorem—it is sufficient to show that for any pure state
jC�Vab [ V ≠ Hab ,

E�jC�Vab� $ Ef��V � 1 Ef �pab� , (16)

where

�V � trab�jC�Vab�Cj� , (17)

pab � trAB�jC�Vab�Cj� . (18)

Indeed, denoting by �k
V and p

k
ab the reduced density ma-

trices of systems AB and ab for each jCk�, we would have

Ef �rV ≠ sab� �
X
k

pkE�jCk ��

$
X
k

pkEf ��k
V � 1

X
k

pkEf �pk
ab�

$ Ef

√X
k

pk�
k
V

!
1 Ef

√X
k

pkpk
ab

!

� Ef �rV � 1 Ef�sab� . (19)
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where the first inequality assumes Eq. (16), the second
inequality uses that Ef is a convex function and the
last step follows from the fact that rV �

P
k pk� k

V and
sab �

P
k pkp

k
ab . Let us then move to justify Eq. (16).

E�jC�Vab� is given by the von Neumann entropy of the
reduced density matrix jAa � trBb�jC�Vab�Cj�. Because
of Eq. (11) we have

jAa �
X

l

ql jml�A�mlj ≠ trb�jnl�ab �nlj�

�
X

l

ql jml�A�mlj ≠ hl
a . (20)

Define gA � tra�jAa� �
P
l

ql jml�A�ml j. Then we have

E�jC�Vab� � S�jAa� $ S�gA� 1
X

l

qlS�hl
a�

$ Ef��V � 1
X

l

qlE�jnl�ab �

$ Ef��V � 1 Ef�pab� . (21)

The first inequality follows from the strong subadditivity
of the entropy [18], as shown in [16]. In the second
inequality we have used that S�gA � trB��V �� $ Ef ��V �
[19], also that S�hl

a � trb jnl�ab �nlj� � E�jnl�ab�. Fi-
nally, the last inequality follows from the fact that
	ql , jnl�ab 
 is a (possibly nonoptimal) realization of pab ,
pab �

P
l ql jnl�ab�nl j. �

Thus, as illustrated in example 1, we can use this theo-
rem to relate the asymptotic entanglement cost Ec of the
mixed states supported on some subspace V [ HA ≠ HB

to their entanglement of formation Ef . All that is needed
is to identify subspaces V , HAB that fulfill the above
requirements.

Recall that, other than for two-qubit mixed states, the
value of Ef is known in only very few cases [14]. In this
sense, another class of subspaces V 0 [ HA ≠ HB of par-
ticular interest are those such that all their vectors are re-
lated by local unitary transformations. Since their reduced
density matrices have the same spectrum, all these states
are equally entangled. Let E�V 0� denote their entropy of
entanglement. Then, because a mixed state rV 0 supported
on V 0 is necessarily a mixture of vectors of V 0, we con-
clude that Ef�rV 0� � E�V 0�.

Example 2. Let us consider a two-qutrit system,
HA � HB � C 3, and the antisymmetric subspace V 0 [
HA ≠ HB, spanned by the vectors

j0�V 0 �
1
p

2
�j1�Aj2�B 2 j2�Aj1�B� ,

j1�V 0 �
1
p

2
�j2�Aj0�B 2 j0�Aj2�B� , (22)

j2�V 0 �
1
p

2
�j0�Aj1�B 2 j1�Aj0�B� .
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Notice that trB�ja�V 0�bj� � �da,bIA 2 jb�A�aj��2.
Therefore, for any vector jf�V 0 �

P
a caja�V 0 , its re-

duced density matrix r
f
A � trBjf�V 0 �fj can be expressed

as a linear combination of the identity operator IA and
the transposition of a projector onto the state jfA� �P

a ca ja�A,

r
f
A �

1
2 IA 2

1
2 �jf�A�fj�T (23)

(equivalently, any two antisymmetric states are related by
local unitary transformations). It is then straightforward to
obtain Ef �rV 0� � 1 ebit for any state rV 0 [ B�V 0�. Un-
fortunately, the subspace V 0 does not meet the require-
ments of the theorem, and we cannot compute Ec for this
family of mixed states.

Finally, in some cases one can combine the two results
discussed in this paper to determine both Ef and Ec, as the
following examples illustrate.

Example 3. Let us consider a qubit-qutrit system,
HA � C 2 and HB � C 3, and the subspace V 00 spanned
by

j0�V 00 �
1
p

3
�j0�Aj2�B 2

p
2j1�Aj0�B� ,

j1�V 00 �
21
p

3
�j1�Aj2�B 2

p
2j0�Aj1�B� .

(24)

In this case trB�ja�V 00�bj� � �2da,bIA 2 ja�A�bj��3, and
therefore, for any vector jf�V 00 �

P
a caja�V 00 , we find

trB�jf�V 00 �fj� �
2
3 IA 2

1
3 jf�A�fj, (25)

where jf�A �
P

a ca ja�A. It follows that entanglement
is constant in V 00, Ef�rV 00� � E�jf�V 00� � H2�1�3�. In
addition, by noticing that the TPCP map M00,

M00�jf�A�fj� � 2
3 IA 2

1
3 jf�A�fj , (26)

is entanglement breaking, since it can be expanded as [17]

M00�X� �
Z

HA

djf�A tr�jf�A�fjX� �IA 2 jf�A�fj� ,

(27)

it follows, because of the theorem, that also Ec�rV 00� �
H2�1�3�.

So far, we have calculated the entanglement cost for rank
2 density operators. One can also use the above methods
to determine this quantity for higher rank operators, as the
following example shows.

Example 4. Let us consider HA � C 3, HB � C 6, and
the subspace V 000 spanned by

j0�V 000 � 1
2 �j1�Aj2�B 1 j2�Aj1�B 1

p
2 j0�Aj3�B� ,

j1�V 000 � 1
2 �j2�Aj0�B 1 j0�Aj2�B 1

p
2 j1�Aj4�B� , (28)

j2�V 000 � 1
2 �j0�Aj1�B 1 j1�Aj0�B 1

p
2 j0�Aj5�B� .
027901-3
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Since trB�ja�V 000�bj� � �da,bIA 1 jb�A�aj��4, for any
vector jf�V000 �

P
a ca ja�V 000 we have

trB�jf�V 000�fj� �
1
4IA 1

1
4 �jf�A�fj�T, (29)

where jf�A �
P

a ca ja�A. It follows that the spec-
trum of the reduced density matrix for system A is
	1�2, 1�4, 1�4
, that is, the same for any pure state jf�V000 .
Therefore the entanglement is also constant in V 000,
Ef �rV 000� � E�jf�V 000� � 1.5 ebits. Finally, the TPCP map

M000�jf�A�fj� � 1
4 IA 1

1
4 �jf�A�fj�T , (30)

is entanglement breaking [20], since when applied to the
maximally entangled state �

P2
i�0 ji�Aji�C��

p
3, where C

denotes an auxiliary system, the resulting state P1�6, pro-
portional to the projector P1 onto the symmetric subspace
of HA ≠ HC, is known to be separable [22]. Consequently,
the theorem implies that Ec�rV 000� � Ef�rV 000� � 1.5 ebits.

Summarizing, we have shown that the entanglement of
formation Ef is additive for mixed states supported on a
subspace such that tracing out one of the parties corre-
sponds to an entanglement-breaking channel [16]. This has
allowed us to evaluate the entanglement cost Ec of several
families of mixed states. A series of examples have been
selected to illustrate these results.

Whether the entanglement of formation is additive for
general mixed states remains an open question, which cer-
tainly deserves further investigation.
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