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Why an ac Magnetic Field Shifts the Irreversibility Line in Type-II Superconductors
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We show that for a thin superconducting strip placed in a transverse dc magnetic field— the typical
geometry of experiments with high-Tc superconductors— the application of a weak ac magnetic field
perpendicular to the dc field generates a dc voltage in the strip. This voltage leads to the decay of the
critical currents circulating in the strip, and eventually the equilibrium state of the superconductor is
established. This relaxation is not due to thermally activated flux creep but to the “walking” motion of
vortices in the two-dimensional critical state of the strip with in-plane ac field. Our theory explains the
shaking effect that was used for detecting phase transitions of the vortex lattice in superconductors.
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Experimental investigation of the equilibrium properties
of type-II superconductors can be performed only in the
reversible region of the magnetic field (H) versus tem-
perature (T) plane. But often strong flux-line pinning pre-
vents the measurement of equilibrium properties. In this
context, Willemin et al. [1] recently made an interesting
observation. Their experiments revealed that application
of an additional small oscillating magnetic field perpen-
dicular to the main dc field leads to a fast decay of the
currents circulating in the critical state of various high-Tc

superconductors. This effect dramatically extends the ob-
servable reversible domain in the H-T plane. The relaxa-
tion of the irreversible magnetization in these experiments
was exponential in time, and thus was obviously different
from thermally activated flux creep, which leads to a loga-
rithmic time law. Using this vortex-shaking process, the
melting transition of the vortex lattice in YBa2Cu3O72d

crystals was detected [2] at temperatures very close to the
critical temperature Tc, where the melting could not be in-
vestigated before. With the same shaking method, it was
discovered [3] that the order-disorder transition in the vor-
tex lattice of Bi2Sr2CaCu2O8 is of the first order at low
temperatures, where vortex pinning usually masks the cor-
responding jump in the equilibrium magnetization. Thus,
the vortex-shaking process opens new possibilities in ex-
perimental investigation of the H-T phase diagrams of su-
perconductors. Nevertheless, the nature of this important
effect so far remained unclear.

In this paper we give a quantitative explanation of this
vortex-shaking effect for thin strips. It is shown that the
relaxation is caused by the generation of a dc electric field
by the ac magnetic field. We obtain this result in the frame-
work of a quasistatic approach based on the standard criti-
cal state concept. Therefore, this effect is quite general
and should occur in all type-II superconductors, not only
in high-Tc materials. In contrast to the generation of an
electric field in the case [4] when the ac and the dc mag-
netic fields are parallel, the above electric field appears in
superconductors without a transport current. We also point
2-1 0031-9007�02�89(2)�027002(4)$20.00
out a new way of measuring the critical current density jc

in superconductors.
The dc electric field in general depends on the orien-

tation of the ac magnetic field with respect to the cur-
rents circulating in the superconductor. In the following
we shall analyze the simplest situation: A thin supercon-
ducting strip fills the space jxj # w, jyj , `, jzj # d�2
with d ø w; the constant and homogeneous external mag-
netic field Ha is directed along z, while the ac mag-
netic field h cosvt is applied along x, i.e., perpendicular
to Ha and to the currents in the sample (Fig. 1). We
also make here the usual Bean assumption that the criti-
cal current density jc does not depend on the local induc-
tion B. The field Ha is assumed to be sufficiently large
to exceed both the field of full penetration for the strip
[5], Hp � � jcd�p� ln�2ew�d�, and the lower critical field
Hc1, and so we may put B � m0H.

A qualitative explanation of the shaking effect is as fol-
lows: The currents flowing in the critical state of the strip
generate a nonuniform distribution of the magnetic induc-
tion Bz�x�. The ac field periodically tilts the vortices in this
state. However, at each point x with a nonzero sheet cur-
rent J�x� (the current density integrated over the thickness
d), the tilt is not symmetric relative to the central plane of
the strip z � 0, and during each cycle of the ac field, the
asymmetry leads to a shift of vortices towards the center
x � 0 of the strip. This shift tends to equilibrate Bz�x�,
and it also generates a dc electric field which decreases
J�x�. When J�x� reaches zero, the asymmetry disappears,
and the process stops.

It will be shown below that the generated dc electric field
is proportional to the thickness of the sample, d. Thus,
to describe the effect, the strip cannot be considered as
infinitely thin, and the appropriate critical state problem is
two dimensional. However, according to the approach of
Ref. [6], the smallness of the parameter d�w enables us
to split the problem into two simpler problems: A one-
dimensional problem across the thickness of the sample,
and a problem for the infinitely thin strip. Namely, we first
© 2002 The American Physical Society 027002-1
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FIG. 1. Strip geometry and magnetic fields (upper inset).
A flux line “walking” from left to right through a section
of the strip (“slab”) is shown at times tv�p � 0, 1, 2, 3.
The swivel points of the line are marked by circles. Here
h�Jc � 0.6, J�Jc � 0.5, yielding z1 � 2z2 � 0.25d and
Dx � 0.35�m0J�Bz�d. Dx is the shift per cycle, Eq. (1); x is
measured from an arbitrary point of the “slab.” The line shape
consists of parabolas with d2x�dz2 � 6m0jc�Bz . The scheme
at the right shows the current profiles across the slab at the
extremal times 1 and 2 and at some intermediate time, where
the two arrows indicate the penetration of the current-inversion
front.

interpret a small section of the strip around an arbitrary
point x (see Fig. 1) as an “infinite” slab of thickness d
placed in a perpendicular dc magnetic field Bz�x� and in a
parallel ac field h cosvt and carrying a sheet current J�x�.
The resulting dc electric field Ey � Ey�J, Bz , h� for the
slab we then use as the local electric field Ey�x� for an
infinitely thin strip, to calculate the temporal evolution of
the sheet current J�x� and induction Bz�x� in this strip by
the method of Ref. [7].

We begin with the analysis of the dc electric field Ey

generated by the ac magnetic field, h cosvt, in an infinite
slab with sheet current J and with a constant and homoge-
neous magnetic field Bz . At sufficiently small v [8], the
problem may be considered quasistatically: We solve the
critical state equation for the slab, dBx�dz � m0jcr �z, t�,
at every moment of time t, and then find the shape of the
flux lines at this moment from dx�Bx � dz�Bz and the
condition that the points on each line where jcr changes
its sign cannot move. The critical current density jcr is
always equal to jc or 2jc, and its distribution over z is
just the well-known distribution in a slab in a parallel
magnetic field and with current J. In particular, at t � 0
and t � 2p�v one has jcr � jc for z2 , z # d�2, and
jcr � 2jc for 2d�2 # z , z2 (see Fig. 1), while at t �
p�v one has jcr � 2jc for z1 , z # d�2, and jcr � jc

for 2d�2 # z , z1 where z1 � 2z2 � J�2jc . An es-
sential finding of this analysis is that during one half
cycle (0 # t # p�v) every flux line turns around a fixed
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“swivel point” with the coordinate z � z1, while during
the second half cycle (p�v # t # 2p�v) the line turns
around another fixed point with z � z2. As a result, the
line “walks” along x; see Fig. 1. The shift of the vortices
during one full cycle is

Dx �
2m0J

jcBz
�h 2 hp�J�� , (1)

where hp�J� � �Jc 2 jJj��2 is the field of full penetration
of parallel flux into a slab with current J, and Jc � jcd
is the critical sheet current. Note that in deriving Dx we
have assumed h $ hp�J�. Otherwise, the x component of
the magnetic field does not penetrate completely into the
slab, a section of the flux line does not sway and hence
does not move at all, and thus Dx � 0. The dc electric
field generated by the above shift of the vortex lines is
Ey � �v�2p�DxBz, and hence we arrive at

Ey � 0 for h , hp�J� ,

Ey �
m0vdJ

pJc
�h 2 hp�J�� for h $ hp�J� .

(2)

The described mechanism for the generation of a dc
electric field was proposed many years ago [8], and Eq. (2)
is equivalent to the formula (2.8) of Ref. [8]. Equation (2)
also coincides with the corresponding result for the slab
obtained in our paper [4], though in Ref. [4] the dc mag-
netic field lies in the plane of the slab. This coincidence [9]
is not surprising, since in both cases Ey may be interpreted
as being generated by the transfer of the x component of
the flux across the slab thickness d.

In the derivation of Ey we have assumed that J and
Bz do not change during one cycle. This approximation
is justified when the relaxation time of the profiles J�x�
and Bz�x� considerably exceeds the period 2p�v of the
ac field. As will be shown below, this condition is indeed
fulfilled for thin samples, d ø w, and thus the approxi-
mation is self-consistent.

We now consider the temporal evolution of the profiles
J�x� and Bz�x� in the infinitely thin strip [7]. This evolu-
tion is caused by the slow “walking” of vortices toward the
center of the strip and is given by the Maxwell equation

≠Bz

≠t
� 2

≠Ey

≠x
, (3)

with Ey specified by Eq. (2). Since Ey � yxBz , where yx

is the average velocity of the vortices, the above equation
simply expresses the conservation law of their number in-
side the strip. On the other hand, the Biot-Savart law yields
the following relation between the sheet current J and Bz:

Bz�x�
m0

� Ha 1
1

2p

Z w

2w

J�u�du
u 2 x

. (4)

Equations (2)–(4) together with the initial condition

J�x�jt�0 � 2Jcx�jxj , (5)
027002-2
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are sufficient to determine the temporal evolution of J, Ey ,
and Bz in the strip, i.e., the functions J�x, t�, Ey�x, t�, and
Bz �x, t�.

To proceed further, it is convenient to rearrange Eqs. (3)
and (4) as follows: We invert [10] Eq. (4), differentiate
both sides of the result with respect to t, insert Eq. (3), and
arrive at an equation for J�x, t�:

≠J�x, t�
≠t

�
2

pm0

Z w

2w

du

u 2 x

µ
w2 2 u2

w2 2 x2

∂1�2 ≠Ey�J�
≠u

,

(6)

with Ey�J� given by Eq. (2). The right-hand side of Eq. (6)
is proportional to �d�w�v; this becomes evident if one in-
troduces the dimensionless length x�w. Thus, the decrease
of J�Jc during one cycle is determined by the small pa-
rameter d�w, and the above assumption that J and Bz are
constant over one cycle is well justified.

The numerical method of solving Eq. (6) is well elabo-
rated [7], and we use it to analyze the evolution of the
sheet current J�x, t�. In Fig. 2 we show the time depen-
dence of the magnetic moment [11] per unit length of the
strip, M�t� �

Rw
2w J�x, t�x dx, at various amplitudes h of

the ac magnetic field. If h�Jc . 0.5, then jM�t�j decreases
almost exponentially with time, and eventually the equilib-
rium state [12] is established since J ! 0 everywhere in
the strip; when h�Jc , 0.5, the equilibrium state is not
reached, Fig. 3. At large times t, the saturation value of
the current in the sample, J`, can be found from the con-
dition Ey�J`� � 0, yielding

J` � Jc 2 2h . (7)

In the special case h � h� � 0.5Jc, Eq. (2) gives Ey ~

J2, and it follows from Eq. (6) that M ~ J ~ t21. Thus,
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FIG. 2. The time dependence of the magnetic moment M�t�
of the strip at various amplitudes h of the ac magnetic field:
h�Jc � 0.1, 0.2, . . . , 0.8, 1, 2. The dashed line (h�Jc � 0.5)
separates the complete and incomplete relaxation of M .
M�0� � M0 � 2w2Jc is the magnetic moment of the strip in
the fully penetrated critical state. The time unit t0 � �pw�vd�
corresponds to w�2d ¿ 1 cycles.
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we conclude the following: When in an experiment the
amplitude h is fixed while jc increases due to a decrease
of temperature T , then at some T one has Jc � 2h, and at
lower T the vortex shaking will not lead to the equilibrium
state. In other words, the greater is jcd, the greater is
the ac amplitude h required for the equilibrium state to be
reached. This feature of the vortex-shaking process was
indeed observed in the experiments [2,3].

We consider now more closely the practically impor-
tant case h . Jc�2. When J decays, then, according to
Eq. (2), the problem formally reduces to the Ohmic strip
problem analyzed in Ref. [7], but with the resistivity now
associated neither with free flux flow nor with thermally
assisted flux flow, namely, E�j � r � m0nd2�2h�Jc 2

1� � const, n � v�2p. In this case the sheet current af-
ter some transient time tends to the following solution of
Eq. (6):

J�x, t� � 2CJcf�x�w� exp�2t�t� , (8)
where C is a constant depending on the magnetic his-
tory, f�y� is the normalized eigenfunction with lowest
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FIG. 3. Profiles of the sheet current J�x, t� in the strip at
various times t (in units t0�100, t0 � pw�vd) starting from
Eq. (5). Top: h�Jc � 0.3; the dashed line shows J`, Eq. (7).
Bottom: h�Jc � 0.7; exponential relaxation to J � 0.
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eigenvalue L of the integral equation,

Lf�y� � 2
1

p2

Z 1

21

du
u 2 y

µ
1 2 u2

1 2 y2

∂1�2 df�u�
du

, (9)

and the relaxation time t is given by

t21 � L
vd
w

µ
2h 2 Jc

Jc

∂
. (10)

Numerical analysis [7] yields L � 0.6386. The odd func-
tion f�y� � 2f�2y� normalized to

R1
0 yf�y� dy � 1

2
is shown in Fig. 4. The magnetic moment per unit
length of the strip, M �

Rw
2w xJ dx, is then M �

2Cw2Jc exp�2t�t�, while in the fully penetrated critical
state one has M � M0 � 2w2Jc and in the Meissner
state [7] M � 2pw2Ha.

Thus, we obtain that at h . Jc�2 the decay of the
current becomes exponential in time, in agreement with
the experimental data [1], and the spatial profile of the
current tends to the universal function f�x�w�, which is
independent of the superconducting parameters and di-
mensions of the strip. It also follows from Eq. (10) that
the rate of the decay increases with v and h. However,
for the above quasistatic analysis to be valid, v should
not be too large [8], while the condition �tv�2p� ¿ 1
leads to �w�d� �Jc�h� ¿ 1, or h ø jcw. This puts an
upper bound on h up to which the above formulas are
applicable.
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Interestingly, with Eqs. (7) and (10), measurements of
the amplitude h� at which J` � 0, or of t for h . h�,
allow one to obtain jc at short times t � v21 where jc is
only weakly affected by thermally activated creep.

To conclude, we give a quantitative description of the
vortex-shaking effect in a thin superconducting strip. It is
shown that in the framework of the critical-state theory, the
decay of the critical currents to zero, or the decrease of the
magnetic moment of the strip to its equilibrium value, is
due to the generation of a dc electric field by an ac mag-
netic field applied normal to the main dc magnetic field.
This electric field originates only if the finite thickness of
the strip is taken into account, and so the theoretical de-
scription of the vortex-shaking effect is, strictly speaking,
a two-dimensional spatial problem. But the small value
of the parameter d�w enabled us to simplify the problem
and to solve it explicitly for ac amplitude h ø jcw. When
the thin superconductor has a different shape, e.g., looks
like a square platelet, there are regions where the ac mag-
netic field is parallel to the sheet current. In this case,
the analysis of the problem becomes more complicated.
Nevertheless, the obtained results explain the properties
of the vortex-shaking effect observed in the experiments
[1–3] and also shed light on the origin of similar intrigu-
ing effects [13–15] discovered earlier for slightly different
geometries.
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