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Phase Glass is a Bose Metal: A New Conducting State in Two Dimensions
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In the quantum rotor model with random exchange interactions having a nonzero mean, three phases, a
(i) phase (Bose) glass, (ii) superfluid, and (iii) Mott insulator, meet at a bicritical point. We demonstrate
that proximity to the bicritical point and the coupling between the energy landscape and the dissipative
degrees of freedom of the phase glass lead to a metallic state at T � 0. Consequently, the phase glass is
unique in that it represents a concrete example of a metallic state that is mediated by disorder, even in 2D.
We propose that the experimentally observed metallic phase which intervenes between the insulator and
the superconductor in a wide range of thin films is in actuality a phase glass.
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There is now a preponderance of experimental evidence
[1–4] that the disorder or magnetic-field-induced destruc-
tion of superconductivity in a wide range of thin metal
alloy films leads first to a metallic state with a nonzero
conductivity as T ! 0. At sufficiently large values of the
disorder or magnetic field, a transition to a true insulating
state obtains. Within the standard bosonic description [5,6]
of the insulator-superconductor transition (IST), the onset
of an intervening metallic state is problematic because only
two options are thought to exist for bosons: (i) localized
in a Mott insulating state or (ii) condensed in a super-
fluid. In the former, the conductivity vanishes, whereas
the latter exhibits resistanceless transport. Further, includ-
ing degrees of freedom which lie outside the bosonic or
phase-only models, for example, electronic excitations, is
of no help as electrons are localized in 2D. Indeed, while
the onset of the insulator in homogeneously disordered thin
films is consistent [7–9] with the emergence of electronic
excitations, the intervening metallic and the subsequent
superconducting states appear to be inherently bosonic in
origin.

Consequently, recent theoretical efforts [10–12] on the
origin of the metallic state have focused strictly on bosonic
models. Along these lines, we have shown [11] that the
standard Mott insulating phase in a clean array of Joseph-
son junctions has a nonzero conductivity as T ! 0. This
result arises from the noncommutativity [13] of the fre-
quency and temperature tending to zero limits of the con-
ductivity in the vicinity of a quantum critical point, with
v � 0, T ! 0 being the experimentally relevant limit for
the dc conductivity. In the Mott insulator, quasiparticle
excitations are gapped and obey a Boltzmann distribution.
However, the collision time of such quasiparticles grows
exponentially with the gap [11]. Since the conductivity
is a product of the collision time and the quasiparticle
density, the conductivity is necessarily finite in the limit
v , T . This type of Bose metal is fragile [11], however,
and suppressed by dissipation and disorder. In fact, in the
presence of disorder, the nature of the superfluid-insulator
transition changes dramatically. For example, several au-
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thors [6,14] have argued that, in the presence of on-site
disorder, destruction of the superfluid may (in the pres-
ence of incommensuration) obtain through an intervening
phase with gapless excitations referred to as a Bose glass.
In analogy with the Fermi glass, Fisher et al. [6] proposed
that the Bose glass is an insulator with variable range-
hopping conductivity.

In this Letter we show explicitly that the glass phase
which may interrupt the direct transition from a superfluid
to a Mott insulator in the generally disordered case is in
fact a metal that has a well-defined T ! 0 limit for the
conductivity. Since the thermal average of the supercon-
ducting order parameter is nonzero but vanishes once av-
eraged over disorder, we refer to the glass as a phase glass.
We propose that the intervening metallic phase seen in the
experiments is a phase glass. Our proof that such a phase
possesses a nonzero conductivity as T ! 0 constitutes the
first demonstration of a stable metallic state in 2D in the
presence of disorder.

The starting point for our analysis is the charging model
for an array of superconducting islands,

H � 2EC
X
i

µ
≠

≠ui

∂2

2
X
�i,j�

Jij cos�ui 2 uj� , (1)

with random Josephson couplings Jij but fixed on-site en-
ergies EC. The phase of each island is ui . Note that addi-
tional on-site disorder of the form iyj≠�≠uj results in the
equivalent particle-hole symmetric field theory provided
that the distribution of on-site energies has zero mean. The
nonzero mean case is irrelevant here as this corresponds
to a density-driven IST [15]. Hence, our conclusions ap-
ply to the general disordered case. To incorporate ordered
phases, we assume that the Josephson energies are random
and characterized by a Gaussian distribution, P�Jij� �
1�

p
2pJ2 exp 2�Jij 2 J0�2�2J2, with nonzero mean, J0.

The negative Josephson couplings included in this distribu-
tion are essential to the physics of a disordered supercon-
ductor [14], particularly glassy ordering. We have studied
the nonzero mean problem extensively [10] and established
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explicitly the existence of a bicritical point in which three
phases meet, a Mott insulator, phase glass, and supercon-
ductor. To distinguish between the phases, it is expedi-
ent to introduce the set of variables Si � �cosui , sinui�
which allows us to recast the interaction term in the ran-
dom Josephson Hamiltonian as a spin problem with ran-
dom magnetic interactions,

P
�i,j� JijSi ? Sj. Let �· · ·� and

�· · ·� represent averages over the thermal degrees of free-
dom and over the disorder, respectively. In the supercon-
ductor not only �Sin� but also ��Sin�� acquire a nonzero
value. In the phase (or spin) glass, however, �Sin� fi 0 but
��Sin�� � 0, whereas in the paramagnet or Mott insulator
�Sin� � 0.

The Landau theory for this problem is easily obtained
[10] using replicas to average over the disorder and the
identity ln�Z� � limn!0��Zn� 2 1��n to obtain the zero
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replica limit. The quartic and quadratic spin-spin inter-
action terms that arise from the disorder average can be
decoupled by introducing the auxiliary real fields,

Qabmn�k, k0, t, t0� � �Sam�k, t�Sbn �k0, t0�� (2)

and Ca
m�k, t� � �Sam�k, t��, respectively. The superscripts

represent the replica indices. A nonzero value of Ca
m�k, t�

implies phase ordering in a charge 2e condensate. Hence,
Ca

m couples to the charge degrees of freedom. For
quantum spin glasses (SGs), it is the diagonal elements of
the Q matrix D�t 2 t0� � limn!0

1
Mn �Qaamm�k, k0, t, t0��

in the limit that jt 2 t0j ! ` that serve as the effective
Edwards-Anderson spin-glass order parameter [16–18]
within Landau theory. The free energy per replica,
F �C,Q� � FSG�Q� 1
X

a,m,k,vn

�k2 1 v2
n 1 m2� jCa

m�k, vn�j2

2
1
kt

Z
ddx

Z
dt1dt2

X
a,b,m,n

Ca
m�x, t1�Cb

n �x, t2�Qabmn�x, t1, t2� 1 U
Z
dt

X
a,m

�Ca
m�x, t�Ca

m�x, t��2, (3)
consists of a spin-glass part which is a third-order func-
tional of the Q matrices discussed previously [10,16], the
Ca

m terms that describe the charge 2e condensate, and
the term which couples the charge and glassy degrees of
freedom. The parameters, k, t, and U are the standard
coupling constants in a Landau theory andm2 is the inverse
correlation length. In the disordered phases, �Ca

m� � 0;
hence, in the glassy phase, it is the fluctuations of the Ca

m

field that survive. Our previous analysis [10] shows that
the cross term we have retained here is the most domi-
nant of the possible coupling terms near the bicritical
point.

Our goal now is to calculate the charge transport in the
glassy phase. Near the spin-glass/superconductor bound-
ary, m2 should be regarded as the smallest parameter.
Hence, it is the fluctuations of Ca

m rather than those of
Qab that dominate. Consequently, we adopt the most gen-
eral mean-field ansatz [10,16] for the Q matrices
Qabmn�k, v1, v2� � b�2p�ddd�k�dmn�D�v1�dv11v2,0dab 1 bdv1 ,0dv2,0q
ab� . (4)

The diagonal elements of the Q matrices describe the excitation spectrum. In the glassy phase, the spectrum is ungapped
and given by D�v� � 2jvj�k. The linear dependence on jvj arises because the correlation function Qaamm�t� decays as
t22 [16,17]. This dependence results in a fundamental change in the dynamical critical exponent from z � 1 to z � 2
and the onset of overdamped dynamics, thereby eliminating the d�v� term from the conductivity. In addition, without
loss of generality, we work in the replica symmetric case, qab � q for all a and b, since it was shown [10,16] that replica
symmetry breaking vanishes as T ! 0 and our emphasis is on the low-temperature limit. Finally, because our focus is
charge transport and the electromagnetic gauge couples only to the Ca

m field, we retain only those terms in the free energy
in which at least one of the Ca

m fields is present. Substituting the Q-matrix ansatz [Eq. (4)] into Eq. (3) and introducing
a one-component complex field ca � �Ca

1 , Ca
2 �, we arrive at the following Gaussian theory:

FGauss �
X
a,k,vn

�k2 1 v2
n 1 hjvnj 1 m2� jca�k, vn�j2 2 bq

X
a,b,k,vn

dvn,0ca�k, vn� �cb �k, vn���, (5)
In the above action we introduced the effective dissipa-
tion h � 1��k2t� and rescaled q ! qkt. The associated
Gaussian propagator is

G
�0�
ab �k, vn� � G0�k, vn�dab 1 bG2

0 �k, vn�qdvn,0 (6)

in the n ! 0 limit [19] with G0�k, vn� � �k2 1 v2
n 1

hjvj 1 m2�21. The first term in Eq. (6) is the standard
Gaussian propagator in the presence of Ohmic dissipation.
The Ohmic dissipative term in the free energy arises from
the diagonal elements of the Q matrices. However, it is
the q-dependent term in the Gaussian free energy, the last
term in Eq. (5), that is new and changes fundamentally the
form of the propagator. Because of the dvn ,0 factor in the
second term in the free energy, the propagator now contains
a frequency-independent part, bG2

0 �k, vn � 0�q. In the
free energy, this term couples different components of the
replicas and hence cannot be regrouped with the mass term,
m2. In fact, this term is a highly relevant perturbation
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in all dimensions. From simple tree-level scaling, c �
b�d1z12��2c 0, k � k0�b, v � v0�bz , we find that the
term proportional to q in the free energy rescales as q0 �
qb21z . The dynamical exponent z is determined by the fact
that the scaling dimension of h should remain unchanged.
This gives at the tree level z � 2, as proposed previ-
ously [6] for the superfluid/Bose glass transition. Hence,
027001-3
q0 � qb4, implying that the coupling to the energy land-
scape of the phase glass is strongly relevant and ultimately
responsible for the metallic phase.

To see how this comes about, we use the generalization
[20] of the Kubo formula for the replicated action and
write the conductivity to one-loop order per replica in the
Gaussian approximation as
s�ivn� �
2�e��2

nh̄vn
T

X
a,b,vm

Z d2k

�2p�2 �G�0�
ab �k, vm�dab 2 2k2

xG
�0�
ab �k, vm�G�0�

ab �k, vm 1 vn�� . (7)
The conductivity contains two types of terms. All terms
not proportional to q have been evaluated previously [21]
and vanish as T ! 0. The terms proportional to q2 vanish
in the limit n ! 0. The only terms remaining are propor-
tional to q and yield, after an appropriate integration by
parts,

s�ivn� �
8qe�2

h̄vn

Z d2k
�2p�2

k2
xG

2
0 �k, 0�

3 �G0�k, 0� 2 G0�k, vn�� .

The momentum integrations are straightforward and yield

s�v � 0,T ! 0� �
8e2

h̄
qh

2m4
, (8)

a temperature-independent value for the conductivity as
T ! 0. The dependence on q and h implies that dissipa-
tion alone is insufficient to generate a metallic state. What
seems to be the case is that a bosonic excitation moving
in a dissipative environment in which many false minima
exist does not localize because it takes an exponentially
long amount of time to find the ground state. This is the
physical mechanism that defeats localization in a glassy
phase. Further, the conductivity scales as 1�m4 and hence
diverges as the superconducting phase is approached. This
is precisely what is seen experimentally [1–4].

That the conductivity plateaus in the phase glass regime
does not appear to have been anticipated previously. We
now appeal to much more general arguments to prove
that the singular dependence of the conductivity on m2

as T ! 0 survives even in the presence of the quartic
interaction. At the tree level, a dynamical exponent of
z � 2 renders the quartic interaction U marginally irrele-
vant. However, by considering the last term in Eq. (5)
on equal footing with U in the one-loop renormalization
group (RG) scheme, we reach the conclusion that the RG
equations flow to strong coupling. The relevance of q at
all dimensions manifests itself also by the increasing singu-
larity of relevant contributions from higher-order diagrams
in the perturbation series in U. We consider first the lin-
ear U correction. At this level, the self-energy is given
by a standard tadpole diagram that arises from the cou-
plings in the average �cac�b

P
c ccc�cccc�c�, yielding

S � U
R

v

R
kG

�0�
aa �k, vn�. This diagram [22] is regular-

izable only once the term v2
n is retained in the propa-

gator. The first term in Eq. (6) leads at T � 0 to a standard
mass renormalization and innocuous logarithmic correc-
tions, while the last term is more singular, giving S�1� �
Uq��4pm2�. A similar analysis can be undertaken to
find the first-order correction to the T � 0 conductivity.
The relevant diagrams [23] can be readily generalized for
a two-replica propagator given by Eq. (6). The straight-
forward evaluation of the contribution that does not vanish
in the T ! 0 limit yields

s�1��v � 0� �
3e2

4h
Uhq2

pm6 , (9)

suggesting that each subsequent order in the interaction
leads to a more singular contribution to the self-energy.
This points to a scaling function of the form s �
�e2�h̄� �hq�m4�F�q�m2�, where F�y� 	 yp for large
y, which yields the critical behavior s 	 m2x with
x � 4 1 2p. The value of the exponent p cannot
inferred at any finite order in perturbation theory.

Nonetheless, we assume that all of the most singular
diagrams can be resummed. A simple inspection of the
perturbation series suggests that the fully renormalized
propagator,

Gab�k, vn� � G̃�k, vn�dab 1 bqg�k�dvn ,0 , (10)

can be broken into replica diagonal and off-diagonal
pieces. Likewise, we define the self-energy associated
with this propagator to be Sab�k, vn� � S̃�k, vn�dab 1

bqu�k�dvn ,0 which contains formally all interaction terms.

From the Dyson equation Gab � G
�0�
ab 1 G�0�

acScdGdb , in
which the summation over the repeated indices is implied,
we obtain G̃�k, vn� � �G21

0 �k, vn� 2 S̃�k, vn��21

and g�k� � �1 1 u�k����G21
0 �k, 0� 2 S̃�k, 0��2. The

renormalization of the interaction U leads to the ap-
pearance of the corresponding vertex function [19]
G�k1,k2, k; V1, V2, vn� which is connected to the
self-energy by means of the standard Dyson equation.
This vertex function enters the general expression for
the conductivity represented diagrammatically in Fig. 1.
Each solid line represents the renormalized propagator,
Gab, while the shaded region denotes the vertex function,
G�k1,k2, k � 0; V1, V2, vn�. We are interested here only
in the static T � 0 conductivity. Once the first term in
this diagrammatic expansion is integrated by parts, use
of the standard Ward identity leads immediately to a
cancellation of all diagrammatic contributions to s in
which the external frequency vanishes. As a consequence,
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we obtain the leading contribution to the conductivity in the limit that v � 0, T ! 0 simply from a Taylor expansion
around v � 0. Using Eq. (10) for the renormalized Green function, we obtain the exact expression,

s �
32pe2

h
q

Ω
2

Z d2k
�2p�2 k

2
xg�k�

µ
2

≠G̃�k, jVj�
≠jVj

Ç
V�0

∂
2 q

Z d2k1d2k2

�2p�4 k1xk2xg�k1�g�k2�G̃�k1, 0�

3

∑
2

≠G̃�k2, jVj�
≠jVj

Ç
V�0

G̃�k1, k2, 0� 1 G̃�k2, 0�
≠G̃

≠jVj
�k1, k2, jVj� kV�0

∏æ
, (11)
for the temperature-independent part of the conductivity.
Here G̃�k1,k2, jvnj� � G�k1, k2, 0; 2vn, vn , vn� 1

G�k1, k2, 0; 0, 0, vn�, and it is taken into account that
the frequency dependence of all functions enters through
jvnj due to the full particle-hole symmetry. In deriving
Eq. (11), we assumed that (i) the infinite perturbation
series in U is resummable in principle and (ii) that all
propagators and the vertex function are analytical in jvnj.
The latter assumption seems reasonable, because the most
singular contributions come from diagrams that do not
contain frequencies at all.

We have demonstrated here that the sluggish phase dy-
namics in a phase glass leads ultimately to a metallic state
in d � 2 for bosonic excitations. The strong divergence of
the resultant conductivity on m2 is consistent with the ex-
periments that have observed a distinct plateauing of the re-
sistivity at low temperatures which increases in magnitude
[1] as the distance from the true superconducting phase is
increased. The metallic T � 0 behavior obtains as a result
of the coupling between the dissipative environment and
the energy landscape of the phase glass. Further, since
the dissipation inherent in a phase glass is independent of
temperature, external dissipation arising from phonons is
irrelevant as such coupling vanishes as T ! 0. Conse-
quently, the metallic phase we have found here is robust to
disorder and phonon scattering and in fact constitutes the
first explicit demonstration of a metallic state in d � 2.
Nonetheless, the theory presented here does not address
the issue of whether or not the destruction of the supercon-
ducting phase occurs directly to a conventional insulator or
a glassy phase. However, we suggest that only in the sec-
ond scenario is the destruction of a 2D superconductor in
the absence of a magnetic field consistent with the robust-
ness of a metallic phase with respect to increasing disorder.
We propose that aging and noise measurements as well as
experiments sensitive to trapped flux should be performed
in the intervening metallic regime to explore the glassy

FIG. 1. Diagrammatic representation of the conductivity. Each
solid line denotes the fully renormalized propagator, Gab [see
Eq. (10)] while the shaded rectangle is the vertex function. The
letters a, b, and c represent the replica indices, and the internal
momenta ki are not shown for simplicity.
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scenario suggested here. Clearly a promising extension of
this work would be the fermionic case.
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