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A computational method for multiscale modeling of plasticity is presented wherein each dislocation
is treated as either an atomistic or continuum entity within a single computational framework. The
method divides space into atomistic and continuum regions that communicate across a coherent boundary,
detects dislocations as they approach the boundary, and seamlessly converts them from one description to
another. The method permits the study of problems that are too large for fully atomistic simulation while
preserving accurate atomistic details where necessary, but is currently limited to a 2D implementation. A
validation test is performed by comparing the method against full atomistic simulations for a 2D nano-
indentation problem.
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Plastic deformation and fracture of ductile materials in-
volves important physical phenomena at multiple length
scales. Some phenomena (e.g., dislocation nucleation, mo-
bility, cross-slip, crack formation, and growth) are intrinsi-
cally atomistic. Atomistic studies can address these “unit”
processes involving a few defects but are usually unable
to address larger-scale deformation except with supercom-
puters. Plastic deformation at the micron scale, due to mo-
tion and interaction of many dislocations, can be described
by representing the dislocations as continuum line defects
and neglecting the dislocation core structure [1–3]. Such
continuum models include atomistic effects only through
phenomenological rules. Some atomistic effects, such as
dislocation mobility and cross-slip, are amenable to phe-
nomenological description while others, such as disloca-
tion nucleation and crack growth, may defy description by
simple rules. A true coupled multiscale model should be
capable of dealing with the necessary atomistic degrees
of freedom simultaneously with the continuum degrees of
freedom, including all long-range interactions, within one
overall computational scheme. In this Letter we describe
such a method: the coupled atomistic and discrete dislo-
cation (CADD) method.

CADD consists of a fully atomistic region, with arbi-
trary complexity, directly coupled to a linear elastic contin-
uum region containing dislocations modeled as continuum
elastic line defects. CADD thus minimizes the number
of atoms required to include atomic-scale phenomena and
replaces atomic degrees of freedom by continuum degrees
of freedom describing the continuum elastic displacements
and the dislocation lines with little or no loss of accuracy
relative to full atomistics.

A number of multiscale methods (e.g., [4–8]), connect
an atomistic region to a defect-free continuum region. Key
and distinguishing features of CADD are that (i) dislo-
cations exist in the continuum region, (ii) they are me-
chanically coupled to one another and to the atomistic
region, and (iii) they can be passed between the atomistic
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and continuum regions so that the plastic deformation is
not confined to the atomistic region. Passing of disloca-
tions requires two main developments described below:
(i) detection of dislocations near the atomic/continuum
interface that are candidates for passing and (ii) a pro-
cedure for moving such dislocations across the interface.
The passing methodology here restricts the current CADD
method to 2D problems; extension to 3D is discussed
below. As a test of the current model, we compare its pre-
dictions against full atomistic simulations for a 2D nano-
indentation problem and find good agreement.

Mechanics deals with the solution of boundary value
problems (b.v.p.). The general b.v.p. solved here is shown
schematically in Fig 1. A body is divided into one or more
atomistic regions VA and one or more linear elastic, con-
tinuum regions VC. Interfaces ≠VI are between atomistic
and continuum regions. Tractions T � T0 are prescribed
on ≠VT and displacements u � u0 on ≠Vu. Region VC

contains N continuum discrete dislocations with Burgers
vectors bi and positions di �i � 1 . . . N�. In the atom-
istic regions, any atomic scale defects (dislocations, grain
boundaries, vacancies, voids, amorphous regions) may ex-
ist. The only assumption about these atomistic regions is
that near the interfaces with the continua their behavior
approaches the linear elastic continuum response. The
solution to this b.v.p., consisting of atom positions rA,
dislocation positions di and continuum displacements u,
stresses s , and strains e, is obtained by considering sepa-
rate problems in the continuum (in Fig. 1, Problems I and
II) and atomistic (in Fig. 1, Problem III) domains, gener-
ated by cutting the system along the interface ≠VI while
enforcing continuity of displacements across ≠VI .

The fields in the continuum region can be treated using
the standard discrete dislocation (DD) method [1]. Specif-
ically, the continuum problem is divided into two com-
plementary problems (Fig. 1). Problem I consists of dis-
locations in an infinite elastic continuum and is solved
by superposition of the analytical elastic fields due to the
© 2002 The American Physical Society 025501-1
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FIG. 1. Schematic illustration of the CADD solution
procedure.

individual dislocations at positions d i. We denote the total
field as the ˜ field. Problem I generates tractions T̃ along
≠VT and displacements ũ and ũI along ≠Vu and ≠VI that
differ from the prescribed values of T0, u0, and the uI

imposed by the atomistic region. Problem II is designed
such that, when superimposed with Problem I, the desired
boundary conditions imposed on the continuum problem
are satisfied exactly. Problem II thus consists of a linear
elastic continuum with no dislocations but subject to “cor-
rective” tractions T̂ � T0 2 T̃ on ≠VT and “corrective”
displacements û � u0 2 ũ on ≠Vu and û � uI 2 ũI on
≠VI . All discontinuities and singularities of the disloca-
tions are contained in the ˜ fields of Problem I, so the
fields of Problem II, denoted as ˆ fields, are smooth and
obtainable numerically. The total fields in the continuum
are the superpositions of the fields from Problems I and II:
u � ũ 1 û, s � s̃ 1 ŝ , and e � ẽ 1 ê.

Problem III in Fig. 1 deals with the atomistic region.
Away from the interface it is treated in a standard manner
using interatomic potentials as functions of the atom posi-
tions rA. The subtlety in any atomistic/continuum method
lies in treatment of the interface. Numerous approaches
exist to connect a strictly local continuum region to an in-
herently nonlocal atomistic region (due to the range rcut
of the potentials); e.g., [4–8]. Abruptly cutting the model
along an atomic plane as in Fig. 1 introduces spurious sur-
face energy and relaxation at the interface. To minimize
such errors, we introduce a pad of atoms (positions rP) of
thickness rcut outside of the defined atomistic region and
overlapping the continuum region, as shown in Fig. 2(a),
with a free outer surface. With such a pad, the atoms rA

behave more like proper “bulk” atoms. The pad of atoms
introduces extra energy by double counting the overlapped
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material and makes the region artificially stiff against de-
formation parallel to the interface, but mitigates the major
problems associated with a sharp interface cut. Other in-
terfacing schemes could be employed here but neither the
detecting nor passing of dislocations in CADD are affected
by the method for handling the interface.

With the above decomposition of the desired b.v.p., the
energy functional for the entire system can be expressed as

C �
1
2

Z
VC

�s̃ 1 ŝ� : �ẽ 1 ê�dV

2
Z

≠VC

T0 ? udA 1 Eat�rA, rI , rP� 2 fA ? uA ,

where Eat is the atomistic energy, subscripts A, I, and P
distinguish bulk, interface, and pad atoms, respectively,
uA denotes atom displacements, and fA denotes the ap-
plied tractions T0 resolved into forces on individual atoms
along ≠VT .

We then discretize the ˆ fields (Problem II) using a
standard finite element mesh with nodal displacements ûC

in VC and ûI along ≠VI , where nodes correspond ex-
actly to atoms. The interface atom-node pairs are forced
to have the same displacements throughout the deforma-
tion to ensure compatibility. Fully anisotropic linear elastic
finite elements are used to match the crystalline elastic con-
stants. The ˜ fields (Problem I) use dislocation fields based
on isotropic elasticity, introducing a small error. After
discretizing and using the reciprocal theorem, the energy
functional becomes

C �
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FIG. 2. (a) Closeup of the atomistic/continuum interface.
Continuum elements are light gray. The sharp interface of
atoms/nodes is shown by filled circles; unfilled circles in the
continuum region constitute the “pad” of atoms to mitigate sur-
face effects; other unfilled circles show atoms in the atomistic
region. The dark gray elements are the dislocation “detection
band.” (b) A closeup of one detection element, indicating the
three slip planes passing through it.
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where CCC , CII , CCI represent the FEM stiffness matrices
coupling the various continuum displacements and t̂C, t̃I ,
and t0 are resolved nodal forces. The remaining integral
is the elastic energy in VC of the infinite-space disloca-
tions and requires special care due to the singularities in
025501-3
the dislocation fields. We use the Airy stress function x

to represent the analytic dislocation stress field s̃ , which
permits the dislocation energy to be expressed as a sum
of direct dislocation interactions and a single integral over
the continuum boundary ≠V � ≠VC 1 ≠VI given by
Z
VC
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where x
0
i�di� is the stress function for all but the ith dis-

location evaluated at di.
Since Problem II is linearly elastic, minimization of

the energy with respect to the continuum nodal degrees
of freedom can be performed, leading to additional forces
fI on the interface atoms (corresponding to the nodes uI).
The conjugate gradient (CG) technique is then used to
minimize the reduced energy functional and move both
the atoms and continuum dislocations to their equilibrium
positions. As a natural consequence, the total force (from
interatomic potentials and nodal forces fI ) on the interfa-
cial atoms vanishes at the equilibrium.

In the atomistic regions, dislocations will nucleate
during the energy minimization. Such dislocations that
move toward the continuum region must be detected and
“passed” to the continuum region. We define a “detection
band” of triangular elements between atoms inside VA

with each element sitting on three different slip planes,
as shown in Fig. 2. If a dislocation passes along one of
these planes, it generates a Lagrangian finite strain in the
element of

E �
�bi ≠ m�sym

d
1

�m ≠ bi� �bi ≠ m�
2d2

,

where sym implies the symmetric part of a matrix, m is
the slip plane normal, d is the interplanar spacing, and ≠

is the tensor product. For a given crystal structure and
orientation, all the possible slip systems and associated
strains E are known. The detection algorithm monitors
the strains in the detection band elements and compares
them to the known dislocation slip strains after each CG
energy minimization step. When the strain in an element
corresponds to a particular dislocation, the dislocation core
is assumed to reside at the centroid of that element. Use
of the Lagrangian finite strain tensor is essential because
the crystal can undergo large deformations involving lattice
rotations. Because multiple dislocations can pass through
one element, it is necessary to keep track of all previous
slip activity and consider only the displacements due to
new defects.

Once a dislocation has been identified in an element of
the detection band, it must be “passed” to the continuum
as a discrete dislocation. The detection establishes the lo-
cation of the core, the slip plane, and the Burgers vector of
the continuum entity. The passing requires careful treat-
ment of the kinematics to maintain continuity across the
interface. First, the core is artificially shifted along its slip
plane from its location in the detection band to a location
across the interface in the continuum region by adding the
displacement fields associated with a dislocation dipole.
These displacements cancel the original core in the atom-
istic region and add a new core in the continuum region.
Once this core is in the continuum region, it is added to
the array of discrete dislocations with care being taken to
define the branch cut in the continuum displacement field
such that it matches the slip plane along which the disloca-
tion moves. Subsequent relaxation of the atoms naturally
anneals out the remnants of the atomic core and moves the
dislocation to its continuum equilibrium position.

As a test of the accuracy of the CADD model, we
consider a 2D indentation problem on a system size
amenable to full atomistic simulations. The problem
consists of a rectangular slab, 713 Å high and 466 Å wide
(100 701 atoms), of single crystal Al oriented such that
the sides are �111� planes and the top and bottom are �11̄0�
planes. The Al is described using EAM potentials and
their associated elastic constants. In CADD, the atomistic
region is confined to a small region near the corner of
the indenter containing 2811 atoms. After constructing a
suitable FEM mesh the total number of atoms and nodes
is only 3350. The displacements of the atoms along the
rigid indenter spanning the left half of the top surface are
increased in increments of 0.2 Å and the bottom boundary
of the sample is held fixed. The mesh used for the CADD
simulation is shown in Fig. 3(a), in its final deformed
configuration after the indenter has moved 17 Å. The
displacements shown are the total solution u � û 1 ũ.

The simulations are performed until a total of three full
dislocations have been nucleated, each of which consist
of a pair of closely spaced Shockley partials. Figure 3(b)
shows a comparison of the load-displacement curves for
the fully atomistic and CADD simulations. Figure 3(c)
shows the dislocations positions from initial nucleation at
the top of the model (depth � 0) to the equilibrium po-
sitions as the penetration of the indenter increases. Note
that the bottom of the indenter, at y � 2713 Å, is a rigid
boundary so the dislocations pile up against it. Overall,
the agreement is quite good.

Figure 3(b) shows that the CADD dislocations nucleate
at the same load step or just one step later than in the full
atomistics. The CADD dislocations move further down
and there are slight differences in the load-displacement
025501-3
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FIG. 3. (a) CADD mesh used to simulate nanoindentation. A
deformed finite element mesh is used in the atomistic regime
and shows where slip has occurred. (b) Applied load and
(c) positions of first three emitted dislocations (labeled 1, 2, and
3) as a function of indenter displacement. Open squares: CADD
results. Filled circles: full atomistics.

curves. These effects are all coupled and are likely due to
several minor approximations in CADD. The assumption
of linear elasticity in the continuum region makes CADD
less stiff in compression than the full nonlinear atomistic
model, and spurious residual forces at the CADD interface
remain and can influence the dislocation motion. Most
of these effects can be minimized by using (i) nonlin-
ear FEM in the continuum and/or (ii) a better interface
coupling method. An alternative CADD-like method by
the present authors that is more precise but also much more
cumbersome eliminates some of the small deviations found
here [9].

In summary, we have presented a technique that couples
a fully atomistic region to a linear elastic region contain-
ing discrete dislocations. This is a true multiscale model
in that dislocations are treated either fully atomistically or
as continuum entities depending on where they are located
in space, all within a single framework. Previous efforts
treated the continuum region as defect free or neglected
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atomistics altogether. Other key strengths of the present
model are the automatic detection and passing of disloca-
tions that are nucleated in the atomistic region and move
into the continuum region.

The CADD method is currently a 2D equilibrium im-
plementation. In this form, it can provide qualitative un-
derstanding of the role of large numbers of dislocations
in processes such as grain boundary sliding, atomic scale
void growth, and fracture that cannot be easily treated by
either fully atomistic models or existing discrete disloca-
tion approaches. When no defects are passed between the
atomistic and continuum region, the CADD methodology
applies to fully 3D problems. A full 3D formulation for
the dislocation passing is quite difficult due to the need for
an accurate treatment of dislocation loops that intersect the
atomistic/continuum interface. Recent progress [10] on the
intersection of continuum dislocation loops with free sur-
faces may provide some guidance. Other 2D applications
and extensions to 3D and to dynamics will be the subject
of future work, with the latter expected to be guided by
other dynamic hybrid models (e.g., [6]).
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