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We demonstrate a rectification phenomenon for overdamped particles interacting with a 2D symmetric
periodic substrate when driven with a dc and a circular ac drive. As a function of longitudinal dc
amplitude, the longitudinal velocity increases in a series of quantized steps distinct from Shapiro steps
with transverse rectification occurring near these transitions. The rectification phenomenon is explained
using symmetry arguments and a simple model.
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There has been great interest in dissipative nonequilib-
rium systems capable of producing a ratchet effect. For a
particle moving in an asymmetric potential, a net dc drift
in one direction can occur in the absence of a dc drive
when an applied ac drive is combined with ac flashing
of the potential. This ratchet or rectification phenomenon
has been studied extensively in the context of biological
motors [1], particle segregation [1,2], atom transport in
optical lattices [3], and fluxon motion in superconductors
or SQUIDs [4,5]. In these effectively one-dimensional
(1D) systems the asymmetric potential is the key ingre-
dient leading to rectification. In 2D systems, there are
many new ways to introduce an asymmetry which are not
accessible in 1D, such as the choice of a clockwise ac
drive. There has been considerable work on separating
different particle species through rectification in the flow
of biomolecules driven with time-varying fields through
2D arrays of obstacles [6]. Particles transported through
symmetrical periodic potentials under an ac drive exhibit a
wide variety of nonlinear behavior, including phase lock-
ing that occurs when the external ac frequency matches the
frequency of motion over the periodic potential. This pro-
duces the well-known Shapiro steps observed in the V �I�
curves of Josephson-junction (JJ) arrays [7]. In all these
phase locking systems the ac and dc drives are in the same
direction. Almost nothing is known about what type of
phase locking can occur when the ac and dc drives are not
in the same direction.

In this work we study rectification and phase locking for
an overdamped particle moving in a 2D symmetrical peri-
odic substrate under an applied longitudinal dc drive (fdc)
and two ac drives: fx

ac in the longitudinal direction 90± out
of phase from fy

ac in the transverse direction. We find that
the longitudinal velocity increases in a series of steps as
fdc increases. Near the transition between two steps we
find a rectification of the particle motion in the transverse
direction. The steps correspond to drives at which the par-
ticle motion forms orbits commensurate with the substrate
period. The rectification, which can be understood on sym-
metry grounds, is predominantly in one direction; however,
we also observe a number of reversals of the rectification
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as well. Our results should be directly applicable to vor-
tices in superconductors with periodic pinning, as well as
colloids and biomolecules interacting with 2D arrays of
obstacles.

As a model for vortices in superconductors or colloids
in solution, we consider an overdamped particle moving
in 2D interacting with a repulsive periodic substrate ac-
cording to the equation of motion: fi � fs 1 fdc 1 fac �
hvi , with h � 1. The force from the substrate, a square
array of side a, is fs � 2=U�r�; the form of U�r� is dis-
cussed below. We consider a system of size 8a 3 8a. The
dc drive fdc is applied along the symmetry axis of the pin-
ning array, in the longitudinal (x) direction. The ac drive
is fac � A sin�vAt�x̂ 1 B cos�vBt�ŷ. Note that there is
no dc driving component in the y or transverse direction.
We fix wA�wB � 1.0 and A � B and examine both the
longitudinal time averaged particle velocity �Vx� and the
transverse velocity �Vy �. fdc is increased from 0 to 1.0
in increments of 0.0001, with 3 3 105 time steps spent at
each drive to ensure a steady state.

To model specific systems, we consider periodic sub-
strate potentials created by pinned particles, such as vor-
tices in a periodic array of holes [8] or magnetic dots
[9]. Once all the holes are filled with a vortex, any vor-
tices in the interstitial regions between holes experience a
smooth periodic substrate created by the interactions with
the pinned vortices. For fdc � 0, two crossed ac drives
with small amplitudes A cause the vortex to move in a
circle in the interstitial regions. At increasing A, there are
stable vortex orbits which encircle one pinned vortex, then
four, nine, and so on. We focus on A large enough to gen-
erate orbits encircling one or more pinned vortices. For
the pinned particles, we use the potential for vortices in
a thin film superconductor, U�r� � 2 ln�r�, and employ
a summation technique [10] for the long range interac-
tion. We have also considered potentials for unscreened
or screened charges with interaction of U�r� � 1�r and
U�r� � e2kr�r, respectively.

In Fig. 1(a) we show the longitudinal velocity Vx��av�
versus fdc for a particle with A � B � 0.36. For these
parameters, at fdc � 0 the particle encircles one pin for
© 2002 The American Physical Society 024101-1
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FIG. 1. (a) Longitudinal velocity Vx�av vs driving force fdc
which is applied in the x direction. (b) Corresponding transverse
velocity Vy�av vs fdc. Inset to (a): simulated Vy for the system
shown in the main figure at temperatures T � 0.005 (top), T �
0.01, T � 0.03, and T � 0.05 (bottom).

0.29 , A , 0.4. As shown, Vx increases in quantized
steps with step heights of DVx � av. We label a step
n according to the value of Vx on the step, Vx � nav.
The widths of the integer steps vary with A and v in an
oscillatory manner. There are also some fractional steps
with heights DVx � �p�q�av where p and q are integers
such that p�q , 1.0.

In Fig. 1(b) we show the transverse velocity Vy��av�
versus fdc. Since there is no net dc force in the trans-
verse direction, Vy � 0 for most values of fdc. Near the
steps in Vx , however, Vy is nonzero, indicating that recti-
fication is occurring. The first rectification, in the positive
y direction, occurs at the n � 0 ! 1 step, while at the
n � 1 ! 2 step the rectification is in the negative y di-
rection. For the higher steps, positive rectification regions
with increasing widths appear, while near the n � 7 ! 8
step there are regions of negative rectification. Some of
the rectification phases have very well defined heights of
DVy � va. These include the positive rectification phases
at 3 ! 4, 4 ! 5, and 5 ! 6, as well as the negative rec-
tification phases at 6 ! 7 and 7 ! 8. On these rectifica-
tion plateaus, we find that the particle moves in only one
type of orbit. The other rectification phases do not have
a well defined height, including 0 ! 1, 2 ! 3, as well as
some portions of the 6 ! 7 and 7 ! 8 regions. In these
phases, for any fixed fdc the particle jumps intermittently
between different rectifying orbits with transverse veloci-
ties �p�q�av.

For all of the rectifying regions, if the polarity of the ac
drive is reversed, Vx remains unchanged while Vy changes
to 2Vy . If the waiting time between dc drive increments is
increased, the results are unchanged. The phases described
here remain stable when the system is started from a fixed
fdc value and are not transient phenomena. As the system
size varies, certain orbits become incommensurate with the
system length and precess spatially; however, the velocity
curves are not affected by the system size.
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In Fig. 2 we illustrate representative nonrectifying par-
ticle orbits for Vx steps of n � 0, 1, 2, 4, 5, and 8. For
n � 0 [Fig. 2(a)], Vx � 0, and the particle moves in a
confined square orbit which encircles one pin. For n � 1
[Fig. 2(b)] there is a net motion in Vx, and the particle
circles around one pin before moving over to the next pla-
quette. For n � 2 [Fig. 2(c)] the orbit does not encircle
a pin but forms a small loop which repeats every second
plaquette. For n � 4 and n � 5 [Figs. 2(d) and 2(e)], or-
bits similar to n � 2 occur, with the loop motion now re-
peating at every fourth or fifth plaquette, respectively. A
similar process continues up through the n � 7 step. For
the n � 8 step [Fig. 2(f)] and above, the particle is mov-
ing fast enough that the transverse width of the orbit is less
than a, and no loops appear.

Figure 3 shows representative rectifying orbits. The par-
ticle orbits differ below and above a given step, as il-
lustrated in Figs. 3(a) and 3(b) for the n � 3 ! 4 step.
Below the step [Fig. 3(a)], the particle moves 3a in the
x direction and a in the positive y direction in a single
period. A loop forms when the particle moves in the y
direction. Above the step [Fig. 3(b)], the particle moves
4a in the x direction but still only a in the y direction
in one period; therefore, Vy does not change at the Vx

jump. In Fig. 3(c), below the n � 4 ! 5 step, an or-
bit similar to that of Fig. 3(a) appears. The rectifying
orbit above the 4 ! 5 step resembles that of Fig. 3(b).
In Fig. 3(d) (fdc � 0.454) we show the negative rectifica-
tion phase below the n � 7 ! 8 step. Here the particle
jumps a in the negative y direction every seventh pla-
quette through a small kink. We do not observe loops in
the trajectories for the negatively rectifying phases. Fig-
ure 3(e) (fdc � 0.465) illustrates trajectories for a particle
in the negative rectification region close to the n � 7 ! 8
step. The particle does not move in a specific orbit but
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FIG. 2. Trajectories for fixed fdc for different nonrectifying
regions seen in Fig. 1. The black dots denote the location of
the fixed particles or the potential maxima of the periodic sub-
strate. Shown are steps with (a) n � 0, (b) n � 1, (c) n � 2,
(d) n � 4, (e) n � 5, and (f) n � 8.
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FIG. 3. Trajectories for fixed fdc for different rectifying
regions seen in Fig. 1. The black dots denote the location
of the fixed particles or potential maxima of the periodic
substrate. (a) Right before n � 3 ! 4 step, (b) right after
n � 3 ! 4 step, (c) right before n � 4 ! 5 step, (d) negative
rectification phase below the n � 6 ! 7 step (fdc � 0.454),
(e) negative rectification region on the n � 7 step (fdc � 0.465),
and (f) negative rectification region on n � 8 step
(fdc � 0.514).

jumps intermittently over time between different orbits
with Vy � �p�q�av; however, Vx remains fixed. Simi-
lar intermittent trajectory patterns appear in the rectifying
phases near n � 0 ! 1, 1 ! 2, and 2 ! 3. Intermittent
patterns occur only on the lower steps; above the n � 8
step, only stable rectifying trajectories occur, as illustrated
in Fig. 3(f) (fdc � 0.514).

Rectifying phases occur for any A large enough that the
particle trajectory at fdc � 0 encircles more than one pin.
We have measured Vy�av for the same system shown in
Fig. 1, but with an orbit at A � 0.42 that encircles four
pins. As in Fig. 1, steps in Vx and transverse rectification
in Vy appear, but the step heights are now DVx � 2av.
We find that as A is further increased, orbits that stably
encircle p2 pins, with p integer, produce steps of height
DVx � pav. We obtain very similar results for substrates
with a 1�r or e2kr�r interaction.

We next consider the effects of finite temperature.
We add a noise term fT to the equation of motion
with the property � fT �t�� � 0.0 and � fT �t�fT �t0�� �
2hkBTd�t 2 t0�. In the inset of Fig. 1(a) we plot Vy for
0.18 , fdc , 0.22 at increasing T . For low T there are
still regions where Vy is near zero within our resolution.
The value of Vy should not be zero but exponentially
small for low temperatures. For higher T the maximum Vy

decreases, the width of the Vy peaks are smeared, and the
regions where Vy � 0 are lost. The transverse rectification
still occurs well into the high T regime where the particle
is diffusing about rapidly. We note that the T � 0 approxi-
mation should still be a good approximation for vortex
motion in thin film superconductors for T�Tc , 0.9. We
have also found that the effects of temperature can be
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reduced for stronger interactions between the particle and
the substrate, which are increased for smaller a.

We now consider a more formal argument employing
nonlinear maps to understand the nature of the longitudinal
phase locking and transverse rectification. Define a map
�x, y� ! �x0 1 nxa, y0 1 nya�, from the position of the
particle at the start of a period to that at the end, where
we may restrict to 0 # x, y, x0, y0 # a, with nx , ny integer.
If there is a stable fixed point, �x, y� � �x0, y0�, then the
particle translates by �nxa, nya� in time v21 and so has
average velocity Vx, Vy quantized in multiples of av, as
found above. If the qth power of the map has a stable
fixed point, there are instead steps of fractional heights
�p�q�av.

As fdc increases, the periodic orbit becomes unstable,
and a different periodic orbit with larger Vx appears. This
new orbit will be the next stable periodic orbit at higher
drive. The transition to the new orbit can occur in one of
three ways. (1) If both periodic orbits are stable simul-
taneously, the particle velocity will depend on the initial
conditions in the transition regime. This was not observed.
(2) The second periodic orbit could become stable at the
same time that the first orbit becomes unstable. This be-
havior, which gives rise to infinitely sharp jumps in Vx , is
not generic and hence not expected. (3) There can be a
finite range of drive containing no stable periodic orbits.
Over this range, the average velocity is not quantized. If,
however, some orbits are close to stable, the particle will
spend long times in these orbits, giving rise to intermit-
tent behavior. This behavior is consistent with what we
observe.

The rectification can be understood on symmetry
grounds. The dc drive breaks Ry, the reflection symmetry
across the y axis, but preserves Rx, reflection across the x
axis. The ac drive breaks both Rx and Ry but preserves the
combined symmetry RxRy. The combined drives break
all such symmetries, leading to rectification.

We now turn to a specific toy model illustrating some
of these ideas. Consider a particle in a lattice of repulsive
sites with a � 1, where the potential minima between re-
pulsive sites are at integer x and y values. The y position
of the particle is constrained to take only integer values,
but the x position can be any real value. To model the
translation of the particle through the lattice, the particle
moves first (i) right, then (ii) down, then (iii) left, then
(iv) up. (i) We apply the rule x ! x 1 yr . (ii) If x is
within 0.25 of an integer, x is set to that integer and y is
decremented by one. (iii) Apply x ! x 2 yl . (iv) As in
(ii) except y is incremented by one. Here yr and yl are the
velocity of the particle in the rightward and leftward parts
of the cycle, respectively. In steps (ii) and (iv), the par-
ticle will move to a new y position only if it reaches the
minima between sites at the correct phase of the driving
period, when transverse motion is possible. In this case,
the particle slips into the next row and the x coordinate
of the particle is set to midway between the pinning sites.
In Fig. 4 we show the time averaged velocities Vx and Vy
024101-3
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FIG. 4. (a) Time averaged longitudinal velocity Vx obtained
from model. (b) Corresponding transverse velocity Vy .

obtained with this model for fixed yl � 1.15 and increas-
ing yr , representing increasing fdc. This simple model
produces both plateaus and ratcheting behavior. Much
of this behavior is specific to two or more dimensions.
Consider a map x ! x0, subject to x 1 a ! x0 1 a and
dx0�dx $ 0, true for overdamped motion in one dimen-
sion. It can be shown that it is not possible to have stable
periodic orbits with different values of the current: Shapiro
steps cannot exhibit jumps.

The ratcheting behavior occurs near transitions in Vx

when the number of pinning centers the particle passes
in one period changes, making it possible for the particle
to interact asymmetrically with the pinning sites. For a
clockwise orbit, the particle moves rapidly on the upper
portion of the orbit and is likely to scatter off the pinning
site below when the orbit does not quite match na. On
the lower part of the orbit, however, the particle is moving
more slowly and is likely to slip between the pinning sites
above in spite of a small mismatch, tending to ratchet in
the positive y direction.

The phases we have described should be experimentally
observable for vortex motion in superconductors with a dc
and crossed ac applied currents with periodic pinning ar-
rays where vortices are located in the interstitial regions,
as well as fluxon motion in 2D JJ arrays at rational fill-
ing fractions where vortex-vortex interactions are reduced,
and in biomolecules moving through 2D arrays of posts
[6]. In these active ratchets the rectified velocities can
be controlled by nva, unlike thermal ratchets which rely
on Brownian motion. The longitudinal velocity steps and
transverse rectification may also be observed in electrons
undergoing classical cyclotron orbits in antidot arrays [11]
for orbits where electrons encircle at least one antidot with
an additional external dc drive.
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In conclusion, we find that a novel form of rectification
can occur for an overdamped particle driven by a dc and
a circular ac drive in a system without an asymmetric po-
tential. The longitudinal velocity increases in a series of
steps of height nva. Along these steps the particle moves
in commensurate orbits. Near the steps, rectification in the
transverse direction occurs. We have specifically demon-
strated this model for vortices in superconductors with pe-
riodic pinning and overdamped charged particles such as
colloids. Using symmetry arguments we explain the origin
of the rectification phenomenon. In addition using non-
linear maps we show that the phase locking phenome-
non is distinct from Shapiro steps found for 1D systems.
With a simple toy model we have shown that the quali-
tative features of the phase locking and rectification can
be captured indicating that the results are not specific to a
particular system. Our results can be relevant to vortices in
superconductors with periodic pinning arrays, colloids, and
biomolecules moving through arrays, and classical electron
motion in antidot arrays.
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