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Forward Quark Jets from Protons Shattering the Color Glass Condensate
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We consider the single-inclusive minijet cross section in pA at forward rapidity within the color glass
condensate model of high energy collisions. We show that the nucleus appears black to the incident
quarks except for very large impact parameters. A markedly flatter pt distribution as compared to QCD
in the dilute perturbative limit is predicted for transverse momenta about the saturation scale, which
could be as large as Q2

s � 10 GeV2 for a gold nucleus boosted to rapidity �10 (as at the BNL-RHIC).
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QCD correctly predicted logarithmic violations of
Bjorken scaling in deep-inelastic electron-proton scat-
tering at very large Q2, i.e., at very short distances [1].
Asymptotic freedom provides the theoretical basis for
the successful applications of perturbative QCD to hard
scattering, short distance phenomena. However, the region
of QCD phase space where the field strengths are strong is
largely unexplored. This is where one expects that cross
sections become comparable to geometric sizes of hadrons
and nuclei (the “black limit”) and where the unitarity
limit is reached. A perturbative QCD based mechanism
for unitarization of cross sections is provided by gluon
saturation effects [2,3]. A semiclassical approach to gluon
saturation and QCD in the high energy limit (small x) was
developed in [4–7] and applied to high energy heavy ion
collisions at RHIC [8–11].

Large nuclei provide an ideal environment to study
gluon saturation and unitarization effects since the gluon
density per unit transverse area is larger by a factor of
A1�3 due to the Lorentz contraction of the nucleus. The
scale associated with the high gluon density, the saturation
scale Qs, grows with energy and A and decreases with
increasing impact parameter. At a resolution less than Q2

s ,
the color field carries large occupation numbers, of order
of the inverse QCD coupling constant 1�as . Thus, the
gluons in the nuclear wave function at Q2 , Q2

s condense.
The local color charge density in the transverse plane is
a stochastic variable which eventually has to be averaged
over (see below). Also, the large x (hard) gluons evolve
slowly and so appear frozen to the low x (soft) gluons.
Therefore, the high gluon density state of high energy
QCD at Q2 & Q2

s is called a “color glass condensate” [7].
The Relativistic Heavy-Ion Collider (RHIC) at BNL

will soon allow experimental study of proton-gold or
0031-9007�02�89(2)�022301(4)$20.00
deuteron-gold collisions at a center-of-mass energy ofp
s � 200 300 GeV. We suggest that the saturation

regime of QCD can be probed at RHIC by measuring the
inclusive cross section in p 1 Au (or d 1 Au) collisions
(in this regard, see also [11,12]). In particular, in the
forward region, i.e., close to the rapidity of the proton
beam, the saturation scale Qs can become quite large due
to renormalization group evolution in rapidity [6,7]. Thus,
we predict significant modifications of the pt distribution
of produced pions relative to leading twist perturbation
theory at transverse momenta as large as several GeV. A
modification of the longitudinal distribution of leading
hadrons produced by electrons scattering inelastically
from a black target has been predicted previously [13].
Here, we focus on the transverse distribution in the
forward region from p 1 A scattering, which will be
analyzed experimentally in the near future at RHIC.

At large rapidity, we consider the quark-nucleus elastic
and total scattering cross sections. (In turn, towards mid-
rapidity gluon production becomes the dominant contribu-
tion to the cross section in the color glass condensate model
[11].) We argue that the total quark-nucleus scattering
cross section may be related to the single inclusive hadron
(jet) cross section in proton-nucleus collisions by using the
collinear factorization theorem on the proton side. Let pm

(qm) be the momentum of the incoming (outgoing) quark.
We assume the quark is moving along the left branch of
the light cone such that p2 ¿ p1 � p2

t �2p2. The start-
ing point is the scattering amplitude (for brevity, we do not
write polarization indices explicitly)

�q�q�out j q�p�in� � �outjbout�q�byin�p� jin� , (1)

which, using the LSZ formalism [14] can be written as
�outjbout�q�byin�p� jin� � 2
1
Z2

Z
d4x d4y e2i�px2qy�ū�q� �i !≠y 2 m	 �outjTc�y�c̄ �x� jin� �2i√≠x 2 m	u�p� , (2)
where m is the quark mass and Z2 is the fermion wave
function renormalization factor. u�p� is the quark spinor
with momentum p. The fermion propagator GF in the
background of the classical color field is
�outjTc� y�c̄�x� jin� 
 2i�out j in�GF� y, x� . (3)
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The amplitude then becomes

�q�q�out j q�p�in� �
i
Z2

�out j in�
Z
d4x d4y e2i�px2qy�ū�q� �i !≠y 2 m	GF� y, x� �2i√≠x 2 m	u�p� . (4)
In momentum space, the fermion propagator GF can be
written as [4,15,16]

GF�q,p� � �2p�4d4�q 2 p�G0
F�p�

2 igG0
F �q�

Z d4k

�2p�4 A��k�GF �q 1 k,p� ,

(5)
where A� � Amgm is the classical background color field,
and G0

F is the free fermion propagator. It is useful to define
the interaction part of the fermion propagator from (5) as

GF�q,p� � �2p�4d4�q 2 p�G0
F �p�

1 G0
F �q�t�q,p�G0

F�p� . (6)

Substituting (6) into the amplitude (4) leads to

�q�q�out j q�p�in� � ū�q�t�q,p�u�p� . (7)

Here, we have set Z2 � 1 and �out j in� � 1 since we are
working to leading order in as and our background field is
time independent. This is a very simple relation between
the amplitude for scattering of a quark or antiquark from
the color glass condensate and the quark propagator in the
background color field of the nucleus.

The explicit form of the quark propagator in the
background of a classical color field was calculated in
[4,15–17]. The interaction part, as defined in (6) is
given by

t�q,p� � �2p�d�p2 2 q2�g2
Z
d2zt

3 �V �zt� 2 1	ei�qt2pt�zt , (8)

where

V �zt� 
 P̂ exp

∑
2ig2

Z 1`

2`
dz2 1

≠
2
t

ra�z2, zt�ta
∏

, (9)

and ta are in the fundamental representation. Using (8) in
the scattering amplitude (7) gives

�q�q�out jq�p�in� � �2p�d�p2 2 q2�ū�q�

3 g2u�p�
Z
d2zt�V �zt� 2 1	

3 ei�qt2pt�zt . (10)

The presence of the delta function in the amplitude is due to
the target being (light cone) time independent which leads
to conservation of the “minus” component of momenta. It
can be factored out in the standard fashion,

�q�q�out j q�p�in� � �2p�d�p2 2 q2�M�p,q� , (11)

which gives the cross section

ds �
Z d4q

�2p�4
�2p�d�2q1q2 2 q2

t �u�q1�

3
1

2p2
�2p�d�p2 2 q2� jM�p,q�j2. (12)
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The local density of color charge in the nucleus, ra�xt, x2�,
is a stochastic variable which has to be averaged over.
Commonly, one assumes a distribution of the charge
sources which is local and Gaussian [4,11,16,18,19], such
that the average of any operator O is

�O� �
Z

DrO�r	 exp�2trr2�m2� . (13)

x2m2�zt , x2� denotes the gluon density per unit transverse
area d2zt , and per unit of rapidity, dx2�x2, in the nucleus.
When computing the total cross section, we will have to
square the amplitude (10) before averaging over the color
charge density r of the classical background field. On the
other hand, for the case of elastic scattering, we first aver-
age the amplitude (10) over r and then square it [18,20].
In that way no color exchange occurs over a large distance
in rapidity (from the projectile quark to the nucleus).

The averages of V�zt� and Vy�zt �V �z̄t� are given by
[16,19]

�V �zt��r � exp

∑
2
g4�N 2

c 2 1�
4Nc

x
Z
d2yt G

2
0 �zt 2 yt�

∏
,

(14)

and

�Vy�zt �V �z̄t��r � exp

∑
2
g4�N2

c 2 1�
4Nc

x
Z
d2yt

3 �G0�zt 2 yt� 2 G0�z̄t 2 yt�	2
∏

.

(15)

We have defined x�x2� 

Rx2

A
x2 dz2 m2�z2�, which is the

density of color charge in the nucleus per unit transverse
area integrated over longitudinal phase space (rapidity).
x2
A ø x2

0 is the coordinate of the nucleus, with yA �
logx2

0 �x2
A its rapidity; while x2 ø x2

0 is the coordinate
of the quark projectile, and y � logx2�x2

0 is its rapidity.
(x2

0 is a reference point, which we choose to be midrapid-
ity.) G0�zt 2 yt� is the free propagator of static gluons

G0�zt 2 yt� � 2
Z

L
2
QCD

d2kt
�2p�2

eikt �zt2yt�

k2
t

. (16)

The trace of the quark spinors in the squared amplitude is

1
2

X
spins

jū�q�g2u�p�j2 � 4p2q2. (17)

Averaging over the colors of the incoming quark is made
trivial by the fact that (14) and (15) are diagonal in color
space. For elastic scattering, we shall use (14) to color
average the amplitude given by (10), and afterwards square
it. The color averaging of the amplitude leads to a delta
function of transverse momenta �2p�2d2�pt 2 qt�. This
is due to the assumed translational invariance of the target
022301-2
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in transverse space (we have assumed a large cylindrical
target nucleus so that the color charge density is uniform)
and should be understood as pR2

A�2p�2d2�pt 2 qt� in the
squared amplitude. Using (10)–(12) finally leads to

ds
el
qA

d2b
� �1 2 e2p2Q2

s �NcL
2
QCD 	2, (18)

where we have introduced the saturation scale of the tar-
get, Q2

s 
 �N2
c 2 1�a2

sx�p (this is the same definition as
in [10]).

To compute the total cross section for scattering of the
quark on the nucleus, we first square the amplitude (10)
and then average over the background field using (14) and
(15). It leads to

ds
tot
qA

d2b
�

Z d2qt
�2p�2

Z
d2rt e

2iqtrt

3 �e2�2pQ2
s �Nc�

R
d2kt�k4

t �12exp�iktrt�	

2 2e2p2Q2
s �NcL

2
QCD 1 1	 . (19)

The integral over qt just gives d2�rt� which in turn can be
used to perform the rt integration. The final result for the
total cross section is

ds
tot
qA

d2b
� 2�1 2 e2p2Q2

s �NcL
2
QCD 	 . (20)

From Eqs. (18) and (20), we see that in the high energy
limit (Qs ! `) we have

stot
qA � 2sel

qA � 2pR2
A (21)

as a consequence of unitarity.
It is more interesting to consider the differential cross

section ds
tot
qA�d2bdq2d2qt when the quark momentum qt

is large (q2
t ¿ L

2
QCD). In this limit, one can convolute

the quark-nucleus cross section with the quark distribution
function in a proton and the quark fragmentation function
into hadrons, thereby relating qA scattering to single in-
clusive hadron (jet) production in pA collisions [21]. The
differential cross section is given by

dsqA!qX

dq2d2qtd2b
�

d�p2 2 q2�
�2p�2

Z
d2rt e

2iqtrt

3 �e2�2pQ2
s �Nc�

R
d2kt�k4

t �12exp�iktrt�		 .
(22)

Note that we have dropped the last two terms in (19) since
they do not contribute to the cross section at large qt .

At very large transverse momentum, q2
t ¿ Q2

s , we can
expand the V ’s in Eq. (15), keeping only the first nontrivial
term. This corresponds to the dilute perturbative limit.
Using (16) then gives the expected

dsqA!qX

d2qtd2b
�
Q2
s

q4
t

. (23)

In the region q2
t � Q2

s ¿ L
2
QCD, in turn, we must resum

higher twists, i.e., rescatterings in the nuclear field. We
022301-3
then obtain from (22)

dsqA!qX

d2qtd2b
�

1

q2
t

. (24)

The nonlinearities of the classical field flatten the differen-
tial cross section as compared to the perturbative cross sec-
tion (23). This arises, in fact, because of the “saturation”
of the gluon density in the nucleus atQ2 & Q2

s as obtained
here from the classical description of the semihard gluon
field with large occupation numbers [4–7]. (The same ef-
fect arises for inclusive gluon production [11] and qq̄ [16]
photoproduction at central rapidity, where however Q2

s is
much smaller.) The predicted suppression of the inclusive
cross section should be easy to distinguish from pt broad-
ening, i.e., “initial-state” interactions of the beam quarks
with spectators from the target [22], which enhance the
cross section at semihigh pt .

The single inclusive p 1 A ! h 1 X cross section can
now be obtained in principle by convoluting the total qA
cross section with the quark distribution function of the
proton at the factorization scale Q2

f , which can, for ex-
ample, be chosen to be q2

t , and the quark-hadron (jet)
fragmentation function Dq�h�z,Q2

f �, where z is the ratio
of hadron and quark momenta.

dspA!hX

dyd2ktd2b
�

Z
dx

dz
z2
q�x,Q2

f �

3
dsqA!qX

dyqd2qtd2b
Dq�h�z,Q2

f � . (25)

Here, x denotes the fractional (light-cone) momentum car-
ried by the quark, such that the light-cone coordinate of the
incident proton is related to that of its quark by x2

p � xx2.
The qA cross sections depend on x through the satu-

ration momentum of the nucleus. From the analysis of
HERA DIS data, the saturation momentum scales like
Q2
s �x2�x2

0 ��Q2
s �x2

0 � � �x2
0 �x2�l � �x2

0 x�x2
p �l, with

l � 0.3 [23]. For gold nuclei, it has been estimated that
Q2
s �x2

0 � � 2 GeV2 at RHIC energy (100 A GeV gold
beam, corresponding to yA � 5.4) [10]. Therefore, near
the rapidity of the incident proton, i.e., yp � logx2

p �x2
0 �

25.4, we estimate that roughly Q2
s � 10 GeV2. With

1�L
2
QCD � 25 GeV22, the exponent in Eqs. (18) and (20)

is ,2800. In fact, even at b � 6 fm from the center
of a gold nucleus, using a Gaussian density distribution
for the nucleus we estimate that Q2

s �x2
0 ,b � 6 fm� �

0.75 GeV2, and therefore Q2
s �x2

p ,b� 6 fm� � 3.8 GeV2 �
100L

2
QCD. At the edge of the acceptance of the BRAHMS

spectrometer at RHIC, y � logx2�x2
0 � 24, one obtains

Q2
s �x2,b � 0� � 6.6 GeV2. That is, 2s

el
qA � s

tot
qA �

2pR2
A, with RA the radius of the black disc formed by the

nucleus (i.e., the distance from the center of the nucleus
where Q2

s becomes of order L
2
QCD), is quite close to the

geometric cross section of the gold nucleus.
The quark distribution functions in the proton, and

their fragmentation into pions will modify the transverse
022301-3
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momentum dependence of the pion cross section (25)
relative to the quark cross section (24). Nevertheless, that
modification is the same for both the dilute perturbative
estimate of the qA cross section (23) as well as for the
resummed qA cross section from (24). Therefore, a
modification of the pt distribution from strong nonlinear
color fields as compared to the dilute limit should hold
independently of any scale dependence of the quark distri-
bution and fragmentation functions. The big advantage of
measurements in the forward region is that these effects
extend much farther in pt than in the central rapidity
region, hopefully making it much less ambiguous to
observe them experimentally.
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