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Recent experiments on symmetry-broken mesoscopic semiconductor structures have exhibited an
amazing rectifying effect in the transverse current-voltage characteristics with promising prospects for
future applications. We present a simple microscopic model, which takes into account the energy
dependence of current-carrying modes and explains the rectifying effect by an interplay of fully
quantized and quasiclassical transport channels in the system. It also suggests the design of a ballistic
rectifier with an optimized rectifying signal and predicts voltage oscillations which may provide an
experimental test for the mechanism considered here.
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The decreasing size of nanofabricated structures opens
up new possibilities for mesoscopic semiconductor devices
by exploiting ballistic transport in the two-dimensional
electron gas and quantization of confined electrons. De-
tails of the geometry are crucial for the functioning of such
devices. In the geometry of Fig. 1a, which was used in an
experiment by Song et al. [1], the symmetry was broken on
purpose by introducing a triangle as shown. When current
is injected at the source (S) and drawn out at the drain (D),
a majority of charge carriers is deflected towards the lower
voltage probe (L). Naively thinking and in the spirit of
the Hall effect, one might expect that a voltage difference
builds up between the upper (U) and lower (L) voltage
probe. Since the sample is symmetric with respect to the
exchange of source and drain, the same voltage difference
would arise on reversing the current and the sample would
work as a rectifier.

On second thought, however, our physical understand-
ing of mesoscopic systems leads us not to expect any volt-
age drop from top to bottom at all. As will be argued in
detail below, symmetry considerations and the Landauer-
Büttiker formalism [2] in its most common linear form do
not allow for such a voltage drop. It thus came as a surprise
when the experiment by Song et al. [1] revealed a rectify-
ing effect (see curve labeled “Exp.” in Fig. 2). An interpre-
tation of the experimental result in Refs. [1,3] was based
on the assumption of dissipation within the sample leading
to self-consistent electric fields and a current dependence
of the transmission probabilities through the sample. A
phenomenological ansatz was made, as this current depen-
dence would be exceedingly complicated to calculate in a
microscopic model.

In this Letter we present a microscopic explanation of
the rectifying effect which explicitly takes into account the
energy dependence of the number of transverse modes for
a system of two voltage probes. It does not require the
existence of dissipation in the leads; instead the rectify-
ing effect here originates in the interplay between purely
quantized and quasiclassical transport in different channels
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of the system, which exhibit different energy dependences.
A calculation of the transverse current-voltage character-
istics involving this mechanism shows good agreement
with the experimental observations. This mechanism also
leads to a prediction for the design of a ballistic rectifier
with an optimized rectifying signal. For strong currents
it predicts a reversal and even oscillations of the trans-
verse voltage, which may provide a test for the explanation
presented here.

Transport in mesoscopic systems like the one in Fig. 1a
is typically described by the linear Landauer-Büttiker for-
malism [2]
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FIG. 1. (a) Geometry of the experimental setup used in
Ref. [1]. The leads at S and D are approximately 400 nm wide,
corresponding to approximately 20 to 22 modes at the equi-
librium Fermi energy (about 18 meV). The leads at U and L
are approximately 3.2 mm wide, corresponding to about 180
200 modes. (b) A scheme of a voltage probe. (c) A rectifier
consisting of a combination of two such probes with two
or three channels. (d) Suggested geometry of an optimized
ballistic rectifier.
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FIG. 2. (A–D): Transverse current-voltage characteristics for
various models of a ballistic rectifier as described in the text
calculated for temperature T � 4 K and Fermi energy mF �
18 meV. (Exp.): Experimental curve after Ref. [1] shown for
comparison.

Here Ii is the net current in lead i connecting the sample
to a reservoir (contact) with chemical potential mi. The
leads are assumed to be ideal quantum leads with Mi

modes. Ri � Tii is the reflection coefficient, which de-
scribes backscattering from the sample into lead i, and Tij

are the transmission coefficients from lead j into lead i.
Transport across the sample is assumed to be purely elas-
tic, and dissipation and equilibration take place only in the
reservoirs.

A prominent result of the Landauer-Büttiker formalism
is the reciprocity relation

Rij,kl�B� � Rkl,ij�2B� . (2)

Here Rij,kl � Vkl�Iij is the resistance obtained by dividing
the voltage Vkl measured between contact k and l by the
current Iij flowing from contact j to i. For the system of
Fig. 1a at zero magnetic field we thus have

RUL,SD � RSD,UL . (3)

Because of the symmetry of the system there can be no
voltage buildup between S and D if the current is flow-
ing from L to U. Thus RUL,SD � 0 and hence by means
of Eq. (3) we would expect VLU to vanish identically — in
contrast to the experimental findings. [We would of course
obtain the same results by solving Eqs. (1) directly.] To
overcome this apparent contradiction Song et al. [1,3] sug-
gested to include a phenomenological current dependence
of the transmission coefficients due to dissipation inside
the sample. In our treatment the necessary nonlinearity
arises in the transport equations, if we allow for varying
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numbers of modes in the leads. We will show below that
one need not give up the conceptually attractive assump-
tion of purely elastic transport inside the sample that was
so very successful in describing a wide range of experi-
ments on transport in mesoscopic system (for reviews see,
e.g., [4–6]).

To achieve this aim we use the Landauer-Büttiker for-
malism in a more general form [7]. The current per unit
energy (a quantity which we will call current density in
the following for simplicity) injected into the sample from
reservoir i through lead i at energy E is

i1
i �E, mi, T � �

2e
h

Mi�E�fi�E� . (4)

Here fi�E� � f�E, mi , T � is the Fermi distribution in
reservoir i at temperature T . The outgoing current density
in lead i is
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If we assume that the transmission probabilities Tij are
independent of energy and the mode number, we can write
Tij�E� � TijMj�E� and Eq. (5) becomes

i2
i �E, �ml�, T� �

X
j

Tiji
1
j �E, mj , T � . (6)

The incoming and outgoing currents are, respectively,

I6
i �

Z `

m0

i6
i �E� dE , (7)

where m0 is an auxiliary quantity that is small enough so
that f�m0, mi , T� � 1 holds for all i, but is otherwise arbi-
trary and will not show up in any measurable quantity. The
balance equation for the current source with net current I
is then I1

S 2 I2
S � I and, for the drain, I1

D 2 I2
D � 2I.

A voltage probe is characterized by zero net current, i.e.,
I1
i � I2

i .
The number of modes Mj�E� can be written as

Mj�E� �
X
n

Q�E 2 ´j,n� , (8)

where the ´j,n are the energy eigenvalues of the transverse
modes in lead j and Q�x� denotes the Heaviside step func-
tion. For leads with a hard wall (i.e., boxlike) cross section
of width Wj and for electrons of effective mass m� we have

´j,n �
�h̄pn�2

2m�W2
j

. (9)

In this case the number of modes can also be expressed as

M�E� � Int

∑
Wj

l�E��2

∏
� Int

∑
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p
2m�E

h̄p

∏
, (10)

where Int� � denotes the integer part and l�E� �
h�

p
2m�E is the de Broglie wavelength of the electron at

energy E. The incoming currents can be expressed as
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and the outgoing currents accordingly by integrating
Eq. (6). These formulas were used in obtaining the
numerical results presented below.

Let us now examine the very simple setup of Fig. 1b. A
voltage probe reservoir (P) is connected via two identical
ideal leads to source and drain. To simplify the calcula-
tions let us assume zero temperature, i.e., f�E, mi, 0� �
Q�mi 2 E�. Let us further assume mS $ mP $ mD $
m0, where mS and mD are given and mP is to be deter-
mined, and let us distinguish the cases of narrow and wide
leads.

(i) If M�E� � M � const in the range between m0 and
mS (this corresponds to narrow leads), the outgoing and
incoming current densities from and to the probe reservoir
are simply given by i1

P �E� � 2�2e�h�MQ�mP 2 E� (the
factor 2 arises because two leads are connected to the same
reservoir) and i2

P �E� � �2e�h� �Q�mS 2 E� 1 Q�mD 2

E��. These are trivially integrated and the current balance
of the voltage probe I1

P � I2
P reads

4e

h
M�mP 2 m0� �

2e

h
M�mS 1 mD 2 2m0� (12)

and thus the chemical potential mP of the voltage probe is
independent of M and given by

mP � �mS 1 mD��2 . (13)

(ii) If the leads are assumed to be wide compared to the
Fermi wavelength lF , the number of modes will increase
even under small changes in energy. In the case of a
hard wall channel of width W ¿ lF we can approximate
Eq. (10) by a smooth function, i.e.,

M�E� � Int

∑
W

l�E��2

∏
�

p
2m� W
p h̄

p
E . (14)

Since M�E� grows as
p

E, the channels described in this
approximation may be called quasiclassical, because the
classical energy surface likewise increases as the square
root of the energy. The current densities are i1

P �E� �
2Q

p
E Q�mP 2 E� and i2

P � Q
p

E �Q�mS 2 E� 1
Q�mD 2 E�� with Q �

p
16m eW�h2. The current

balance now reads
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and we find

mP � 3

q
�m3�2

S
1 m3�2

D
��2

2
. �mS 1 mD ��2 , (16)

i.e., the potential mP deviates from the mean Eq. (13).
As illustrated in Fig. 3 this is because the net current is
transported from S to P by a larger number of modes in the
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FIG. 3. Current balance in the voltage probe P and adjustment
of the chemical potential mP at zero temperature. The current
enters P from S in the energy interval �mP , mS� and exits from
P to D in the interval �mD , mP�. The total current I1

P 2 I2
P is

determined by the shaded areas and must balance to zero. (i) For
narrow leads [M�E� � const] this obviously determines mP as
the mean �mD 1 mS��2. (b) In the quasiclassical case mp must
shift to higher values to counterbalance the increase of M�E�
with energy.

energy interval �mP , mS� than from P to D in the energy
interval �mD, mP� and thus mP rises above the mean to
compensate for the additional current.

Equations (13) and (16) suggest how to create a recti-
fier based on ballistic transport: As sketched in Fig. 1c let
us consider two separate pathways from source to drain,
each via a voltage probe as in the above example (ignor-
ing the third dotted pathway for the moment). If on both
paths the number of modes is constant, the voltage probes
will each be at the mean chemical potential between source
and drain, i.e., there will be no voltage drop from top to
bottom (this is what we showed based on the reciprocity
relation in the beginning). The same holds true if the cur-
rent density grows identically with energy in both channels,
e.g., for two quasiclassical channels. If on the other hand
one path is narrow, i.e., has constant mode number M1,
whereas the other is wide, with an increasing number of
modes M2�E�, we can observe a voltage drop between the
probes, as indicated by the interval marked by the fat line in
Fig. 3. Reversing the current yields the same voltage drop
due to symmetry and thus we achieve the rectification of
the signal.

In order to explain the experimental results of Ref. [1]
we need to assume a third channel connecting the probes
U and L in Fig. 1c (dotted lines) with M3�E� modes,
since there is a direct connection between U and L in
Fig. 1a. Now we consider finite temperatures again and
choose M1 � 1 � const in the energy window, whereas
for M2�E� and M3�E� we use the quasiclassical Eq. (14)
with M2�EF� � 20 and M3�EF� � 15. These mode num-
bers were estimated by classical numerical calculations of
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FIG. 4. The voltage VLU undergoes a change in sign as a sec-
ond mode opens up in the narrow channel of Fig. 1c.

the transmission coefficients TUS and TLS in the geome-
try of Fig. 1a modeling the experiment. Curve A in Fig. 2
shows the resulting rectifying signal of this setup. If we
give up the quasiclassical approximation for the wide chan-
nels and use the explicit sums instead, we obtain curve B,
which nicely agrees with the experimental result (note that
the experimental curve is not entirely symmetric due to
an unintentional slight asymmetry of the sample about the
vertical axis).

Based on the above mechanism we can now suggest the
design of a ballistic rectifier with an optimized rectifying
signal. If one manages to suppress the third channel be-
tween U and L, the voltage drop VLU can be enhanced.
This is shown by curve C of Fig. 2 for the model of Fig. 1c
without the dotted channel and using the quasiclassical ap-
proximation for the wide channel. Note that this curve
can easily be calculated analytically for T � 0. Using
Eqs. (13) and (16), one obtains mU and mL, and hence
the voltage difference, as a function of mS, while leaving
mD constant. The total current I is given by the sum of
the individual currents from the source S to U and to L,
i.e., I � 2Q�3�m3�2

S 2 m
3�2
L � 1 2e�h�mS 2 mU�, which

is the current-voltage characteristics in analytic form. If
again we give up the quasiclassical approximation for the
wide leads, we find an even stronger rectifying signal,
as shown in curve D. As a realization of such a system
016804-4
which suppresses the third channel we suggest the geome-
try shown in Fig. 1d.

An interesting phenomenon arises in these structures,
which combine narrow and wide leads, when the narrow
channel opens up a new mode within the energy window:
The voltage VLU undergoes a change in sign. This is
demonstrated in Fig. 4, where the dotted lines again show
curve D from Fig. 2. The solid line corresponds to slightly
wider leads in the upper channel whereby mS becomes
larger than ´2 of the narrow leads. This curve will even-
tually turn back to negative voltages as I (following mS)
increases and shoot up again, when the third mode opens
in the upper channel. This change in sign or even oscilla-
tions should be observable in an appropriate experiment,
which would provide a test for the mechanism of ballistic
rectifiers presented in this paper.
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