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Gapless Spin-1 Neutral Collective Mode Branch for Graphite
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Using the standard tight binding model of 2D graphite with short range electron repulsion, we predict a
gapless spin-1, neutral collective mode branch below the particle-hole continuum with energy vanishing
linearly with momenta at the I' and K points in the Brillouin zone. This spin-1 mode has a wide
energy dispersion, 0 to ~2 eV, and is not Landau damped. The “Dirac cone spectrum” of electrons at
the chemical potential of graphite generates our collective mode, so we call this “spin-1 zero sound”
of the “Dirac sea.” Epithermal neutron scattering experiments and spin polarized electron energy loss
spectroscopy can be used to confirm and study our collective mode.
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Graphite is an important system in condensed matter
science and technology; in carbon research its role is
fundamental. Its electrical and magnetic properties have
been investigated for decades both experimentally and
theoretically [1]. It is one of the simplest of quasi-two-
dimensional zero gap semiconductors/semimetals. Inter-
calated graphites offer many phases of condensed matter
including superconductivity. Other important systems such
as Bucky balls, carbon nanotubes [2], and some form of
amorphous carbon derive many of their novel properties
from their underlying “graphite character.” Any newer un-
derstanding of graphite is likely to have a wider impact.

The aim of this Letter is to predict a simple but im-
portant property of graphite that calls for reexamination
of some of the low energy electrical and magnetic prop-
erties of graphite. We find that graphite possesses a new,
unsuspected gapless branch of a spin-1 and charge neutral
collective mode. This branch lies below the electron-hole
continuum (Fig. 2 below); its energy vanishes linearly with
momenta as fiw,; = hvpg(l — ag?) about three points
(T', K,K’) in the Brillouin zone (BZ) (Fig. 1).

The simplicity of our model makes the result quite inter-
esting. Our spin-1 mode survives in carbon nanotubes and
has fascinating consequences [3]. Consequently graphite
and nanotubes are capable of supporting a stable and co-
herent “neutral spin current” of our excitation at low en-
ergies, unknown in nonmagnetic solids. Some new ideas
on (i) spin-based electronics and (ii) a qubit for quantum
computation that utilizes our novel spin current in graphite
and nanotubes will be discussed elsewhere [3].

Since graphite interpolates metals and insulators, our
collective mode can be viewed from both the metallic
and the insulating standpoint. In paramagnetic metals
“zero sound” is a Fermi surface collective mode [4]. The
“charge” as well as the “spin” of a Fermi sea can undergo
independent oscillations. The charge oscillation becomes a
high energy branch, the plasmon, because of the long range
Coulomb interaction; plasmons in graphite have been stud-
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ied in great detail in the past [5]. The electron-electron
interactions in normal metals do not usually manage to de-
velop a low energy spin collective mode branch because
of the nature of the particle-hole spectrum. However, the
particle-hole spectrum of 2D graphite with a “window”
(Fig. 2) provides a unique opportunity for a spin-1 collec-
tive mode branch to emerge in the entire BZ. From this
point of view our spin-1 collective mode is a “spin-1 zero
sound” of a (2 + 1)-dimensional “massless Dirac sea,”
rather than a “Fermi sea.”

From an insulator point of view our collective mode
is a spin-triplet exciton branch. Triplet excitons are well
known in insulators, semiconductors, and p 7 bonded pla-
nar organic molecules; however, they usually have a finite
energy gap, except when there are magnetic instabilities.

Our spin-1 collective mode may be thought of as a
manifestation of Pauling’s [6] resonating-valence —bond
(RVB) state of graphite: the spin-1 quanta is a delocalized
triplet bond in a sea of resonating singlets. The gapless-
ness makes it a “long range RVB” rather than Pauling’s
short range RVB. Later we will present an argument to
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FIG. 1. (a) Honeycomb lattice, a;, = 5(+/3,=1). (b) The
Brillouin zone, b, = 277(%, *+1). (c) Dirac cone spectrum at
a K point.
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FIG. 2. (a) Particle-hole continuum with a window for
graphite. (b) S(q, w) for g > q((~51—0%).

suggest that at low energies the neutral spin-1 excitation
might undergo quantum number fractionization into two
spin-3 spinons.

The existence of our gapless spin-1 collective mode
branch should influence the spin part of the magnetic sus-
ceptibility, rather than the orbital part, which for graphite is
diamagnetic, large, and anisotropic. Study of spin suscep-
tibility by ESR, NMR, and inelastic neutron scattering are
good probes to detect the low energy part of our collective
modes over a limited energy up to ~50 meV. Our spin-1
collective mode introduces a magnetic instability in the
presence of magnetic field, which will be discussed in a fu-
ture publication. This may explain a recent observation of
ferromagnetism in oriented pyrolitic graphite by Kopele-
vich and collaborators [7]. Our mode could be probed over
a large energy range, by epithermal neutrons and spin po-
larized electron energy loss spectroscopy (SPEELS) [8].
In view of a wide energy scale associated with the collec-
tive modes, probes such as two magnon Raman scattering,
angle-resolved photoemission spectroscopy, scanning tun-
neling microscopy, and spin valves [9] should also be tried.

The importance of electron-electron interaction in
graphite [10,11] and nanotubes [12,13] has been realized
recently and it has led to several interesting studies and
predictions. 2D cuprates with the Dirac cone spectrum
have been studied in the context of antiferromagnetic
(AFM) order in the Mott insulating RVB-flux phase, for
spin-1 goldstone modes [14], and d-wave superconducting
phases, for spin-1 collective modes [15].

Real graphite is a layered semimetal—stacked layers
of a honeycomb lattice of carbon atoms. We have one
p; orbital as the relevant valence orbital and one electron
per carbon atom. The p7r bond produces a filled valence
band and an empty conduction band with vanishing band
gaps at two K points in the BZ. The coupling between
graphite layers is van der Waals—like. However, a small
“coherent” interlayer hopping has been invoked to explain
the presence of small electron and hole tubes and pockets
(with 10™* carriers per carbon atom, i.e., a Fermi energy
er ~ 100-200 K), responsible for the semimetallic char-
acter of graphite.
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We start with a two-dimensional Hubbard model for
graphite, which captures the physics of low energy spin
dynamics. The Hamiltonian is

H=—t Z (czgcj’(, + He) + U Z nithi| .
(i,j)o i
Here t ~ 2.5 eV is the nearest-neighbor hopping matrix
element. While the bare atomic U is of the order of 8 eV,
the effective renormalized U can be of the order of 3—-4 eV.
We will keep U as a parameter to be fixed by experiment.
The dispersion relation for the p 7 bands is

\/§ kea kya ) kya

cos 7 + 4cos 2 (D
with vanishing gaps at the two K points in the BZ (Fig. 1).
The particle-hole continuum of excitations is shown in
Fig. 2. The “Dirac cone single-particle spectrum” at the
I and K points makes the particle-hole continuum very
different from that of a free Fermi gas, or systems with
extended Fermi surface. In contrast to Fig. 3, the particle-
hole spectrum of a 2D Fermi liquid, our spectrum has a
window. The window is characteristic of a 1D particle-
hole spectrum. In the Hubbard model two particles with
opposite spins at a given site repel with an energy U.
This means an attraction for an up-spin particle and down-
spin hole, or an attraction in the spin-triplet channel for
a particle-hole pair. A spin-triplet particle-hole pair could
form a bound state, provided there is sufficient phase space
for the attractive scattering. We find one spin-1 bound state
for every center of mass momentum of the particle-hole
pair. In particular an effective 1D character of phase space
also makes the collective mode energy vanish linearly with
momenta around the three points: I' and K’s.

The collective mode that we are after is obtained as the
poles of the particle-hole response function in the spin-
triplet channel. We will focus on the zero temperature case.
The magnetic response function within the RPA (particle-
hole ladder summation) is given by

x’(q, »)
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FIG. 3. (a) Particle-hole continuum without a window for a
2D Fermi gas. (b) S(q, w) for ¢ < 2kp.
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For the Hubbard-type on-site repulsion, v(q) = U and
the free particle susceptibility is

0 zi fk+q_fk
x(q,0) =+ % o "

Here f’s are the Fermi distribution functions. We have
evaluated the RPA response function numerically and
found the collective mode branch in the entire BZ, below
the particle-hole continuum. However, it is instructive to
linearize the electron and hole dispersion for low energies,
a Dirac cone approximation [10], and to get an analytical
handle. We linearize the dispersion around K and K’ and
replace the BZ by two circles of radii k. (Fig. 1):

3

ex = *huplk| for k < k., 4)
where vy = g%t and N is the number of unit cells. In
our linearization scheme, in Eq. (4) the summation is over
the two circular patches (Fig. 1b).

For g, w small and below the particle-hole continuum,

Imy°(w, q), we obtain an exact asymptotic form [10]:
a2
165 w? — (qur)?
a2g??
16/i\/2vf Jw — qup’

with a square root divergence at the edge of the particle-
hole continuum in (w, q) space. This expression has the
same form as the density of states (DOS) of a particle in
1D (with energy measured from Avgq). Note that, in fact,
Imy°(q, w) = mp,(®), where p, (@) is the free particle-
hole pair DOS for a fixed center-of-mass momentum gq.
That is, the particle-hole pair has a phase space for scat-
tering which is effectively one dimensional. Thus we have
a particle-hole bound state in the spin-triplet channel for
arbitrarily small U. However, we also have a prefactor
¢*'? that scales the density of states. This together with
the square root divergence of the density of states at the
bottom of the particle-hole continuum gives us a bound
state for every q as ¢ — 0, with the binding energy van-
ishing as ag?, as shown below. The square root diver-
gence has the following phase space interpretation. The
constant energy (fw) contour of a particle-hole pair of a

Imy’(q, w) =

27e?

given total momentum ¢ defines an ellipse in k space: w =
vr(lk + q| + |k|). As the energy of the particle-hole
pair approaches the bottom of the continuum, i.e., €,-; —
hivpq, the minor axes of the ellipses become smaller and
smaller and the elliptic contours degenerate into parallel
line segments of effective length ~¢>/2. The asymptotic
equispacing of these line segments leads to an effective one
dimensionality and the resulting square root divergence.

According to (1), the collective mode in the magnetic
channel is the solution of

1 - Ux%q,w)=0

or, equivalently, Imy°(q, w) = 0 and Rex’(q, ) = 7.
The asymptotic expression for Rex’(q, ) is found to b
2

Rey’ ~
ex (4, ) -
2 2
X [kc + q\/— arctan( \/_ ﬂ,
V1 — ¢ V1 — ¢
where z = q%. By using the above expression, we obtain
the following dispersion relation for the collective mode:
3,4
w = qup — hq e, dVF T Ep(q) (5)
SZUF(U - 47rvp)

as w — g — 0. Here Eg(q) is the binding energy of the
particle-hole pair of momentum ¢ around the I" point. The
binding energy around the K points is roughly twice this.

We mentioned earlier that our collective mode is a “mag-
netic zero sound.” While magnetic zero sound is difficult
to obtain in normal metals, graphite manages to obtain it
in the entire BZ because of the window in the particle-hole
spectrum (Fig. 2).

Having established the existence of a gapless spin-1 col-
lective mode branch within the Hubbard model and the
RPA approximation, we will discuss whether the semi-
metallic screened interaction of 3D stacked layers will
affect our result. As mentioned earlier, in tight binding
situation like ours, the spin physics is mostly captured by
the short range part of the repulsion among the electrons.
We have numerically studied the response function for a
more realistic intralayer interaction, namely, the screened
Coulomb interaction (including interlayer scattering be-
tween layers separated by distance d) given by [10]

sinh(gd)

i(w,q) =

and find that the collective mode survives with small quan-
titative modifications.

Let us discuss lifetime effects, that are beyond RPA. A
remarkable feature of our collective mode is that it never
enters the particle-hole continuum. It does not suffer from
Landau damping (resonant decay into particle-hole pair
excitations). To this extent our collective modes are sharp
and protected; higher order processes will produce the
usual lifetime broadening, particularly at the high energy
end. However, in real graphite there are tiny electron and
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hole pockets in the BZ with a very small Fermi energy
~10 to 20 meV. This leads to “Landau damping” of low
energy collective modes around the I' and K points, but
only in a small momentum region Ak ~ 2kp ~ %%,
where kg is the mean Fermi momentum of the electron
and hole pockets. That is, only a few percent of the col-
lective mode branch in the entire BZ is Landau damped.
A small interlayer hopping between neighboring lay-
ers t; ~ 0.2 eV (k2.5 eV, the in-plane hopping matrix
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element) has always been invoked in the band theory ap-
proaches to understand various magneto-oscillation experi-
ments and also c-axis transport in graphite. However, a
strong renormalization of 7, is possible, as an anomalously
large anisotropic resistivity ratio 5[ -~ 10* has been re-
ported in some early experiments on graphite single crys-
tals; a many-body renormalization is also partly implied
by the existence of our spin-1 collective mode at low en-
ergies. Since the emergence of the small electron and hole
pockets (cylinders) are due to interlayer hopping, inter-
layer hopping affects the spin-1 collective modes only in
a small window of energy 0 and ~0.1 eV. For the same
reason the collective modes do not have much dispersion
along the ¢ axis.

Within our RPA analysis the collective mode frequency
becomes negative at the I' point for U > U, ~ 2t. Be-
cause there are two atoms per unit cell, this could be
either an antiferromagnetic or ferromagnetic instability.
Other studies [11,16] have indicated an AFM instability
for U > U, ~ 2t.

Now we discuss the experimental observability of the
spin-1 collective mode branch. The collective mode has a
wide energy dispersion from 0 to ~2 eV. The low energy
0 to 0.05 eV part of the collective modes determines the
nature of the spin susceptibility [Eq. (3)] of graphite and
leaves its signatures in NMR and ESR results. For higher
energies we have to use other probes.

Inelastic neutron scattering can be used to study the
line shapes and dispersion of our spin-1 collective modes.
However, epithermal neutrons in the energy range 0.1 to
~1 eV, rather than the cold and thermal, 0.2 to 50 meV,
neutrons are needed in our case, due to the large energy
dispersion. The dynamic structure factor S(q, w) as mea-
sured by inelastic neutron scattering is obtained by using
our calculated RPA expression for our magnetic response
function using the relation

1
(1 — e P)S(qw) = ——1Imy(q,®). (6)

At the present moment, one need not concentrate on the
energy resolution, and it would be good to focus on proving
the existence of the spin-1 collective mode by neutron
scattering experiments. As the single-phonon density of
states of graphite vanish for energies >0.2 eV, one need
not perform spin polarized neutron scattering in order to
avoid single-phonon peaks.

Another probe for studying the spin-1 collective mode is
SPEELS; exchange interaction of the probing electron with
the 7r electrons of graphite can excite the spin-1 collective
mode. Since the electron current and spin depolarization
essentially measure the magnetic response function, our
calculation of y(q, w) [Eq. (2)] can be profitably used to
interpret the experimental results.

The square root divergence of the density of states at
the bottom edge of the particle-hole continuum tells us
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that the low energy spin physics is effectively one dimen-
sional. To that extent, in a final theory, we may expect our
spin-1 excitation to be a triplet bound state of “two neutral
spin—% spinons” rather than “e* e electron-hole pairs.”
Further, as the energy of the spin-1 quantum approaches
zero the binding energy also approaches zero and the
electron-hole bound state wave function becomes ellipti-
cal, with diverging size. We may then view the low energy
spin-1 quanta as a “critically (loosely) bound” two spinon
state, very much like the quantum number fractioniza-
tion of the des Cloizeaux-Pearson spin-1 excitation in the
1D spin—% antiferromagnetic Heisenberg model. Our result
also suggests a nonlinear sigma model and novel (2 + 1)-
dimensional bosonization scheme for graphite [17].
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