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Limit on the Detectability of the Energy Scale of Inflation
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We show that the polarization of the cosmic microwave background can be used to detect gravity waves
from inflation if the energy scale of inflation is above 2 3 1015 GeV. These gravity waves generate
polarization patterns with a curl, whereas (to first order in perturbation theory) density perturbations do
not. The limiting “noise” arises from the second-order generation of curl from density perturbations,
or rather residuals from its subtraction. We calculate optimal sky coverage and detectability limits as a
function of detector sensitivity and observing time.
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Few ideas have had greater impact in cosmology than
that of inflation [1–3]. The simplest models of infla-
tion make four predictions, three of which provide very
good descriptions of data: the mean curvature of space
is vanishingly close to zero, the power spectrum of ini-
tial density perturbations is nearly scale invariant, and the
perturbations follow a Gaussian distribution. As the data
have improved substantially (e.g., [4–6]) they have agreed
well with inflation, whereas all competing models for ex-
plaining the large-scale structure in the Universe have been
ruled out (e.g., [7–9]).

We must note though that these three predictions are all
fairly generic [10]. Further, although existing models for
the formation of structure have been ruled out, there is no
proof of inflation’s unique ability to lead to our Universe.
Indeed, alternatives are being invented [11].

The fourth (and yet untested) prediction may therefore
play a crucial role in distinguishing inflation from other
possible early Universe scenarios. Inflation inevitably
leads to a nearly scale-invariant spectrum of gravitational
waves, which are tensor perturbations to the spatial
metric. Detection of these gravity waves might allow
discrimination between competing scenarios (e.g., [11])
and different inflationary models (e.g., [12]).

The amplitude of the power spectrum of tensor pertur-
bations to the metric is directly proportional to the energy
scale of inflation. One can use a determination of the ten-
sor contribution to cosmic microwave background (CMB)
temperature anisotropy, here parametrized by the quadru-
ple variance, to determine this energy scale [13]:

V
1�4
� �mPl � 1.15�Q2

T �1�4 � 3.0 3 1023r1�4, (1)

where r � �Q2
T ���Q2

S�, S stands for scalar (density) pertur-
bation, and �Q2

S� � 4.6 3 10211 from observations [14].
Currently the energy scale of inflation remains uncertain
by at least 12 orders of magnitude. Its determination could
be crucial to understanding how inflation arises in a fun-
damental theory of physics.

In Fig. 1 we show the angular power spectrum of CMB
temperature perturbations contributed by scalar perturba-
tions and by tensor perturbations with r � 1023. By de-
termining the total CMB temperature power spectrum we
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can determine or limit the energy scale of inflation, based
on the presence or absence of extra power at low l. The
scalar temperature perturbations inevitably limit our abil-
ity to detect the tensor temperature perturbations to those
cases with r . rlim � 0.13 [15,16].

In [17,18] it was pointed out that tensor perturbations
result in CMB polarization patterns with a curl, whereas
scalar perturbations do not. By analogy with electromag-
netism, these modes are called “B modes,” and the curl-
free modes are called “E modes.” This was an exciting

FIG. 1 (color online). Angular power spectra. The solid lines
are for temperature anisotropies due to scalar perturbations, CS

Tl

and tensor perturbations CT
Tl with r � 1023. The dashed lines

are for the E modes from scalar perturbations CS
El and the B

modes from tensor perturbations CT
Bl . The dotted lines are for

the lensing-induced scalar B modes CS
Bl before (above) and after

(below) the cleaning that can be done by a perfect experiment.
The feature at � , 10 is due to reionization which we assume
occurs at zri � 7.
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development, because the new signature of tensor perturba-
tions could not be confused with scalar perturbations. Fig-
ure 1 also shows the power spectrum of this B mode with
the amplitude it would have if V

1�4
� � 6.4 3 1015 GeV,

corresponding to r � 1023. It is a very weak signal, even
at its peak it is �107 times less than the power spectrum
of the temperature anisotropy. Ignoring any contaminating
source of curl-mode polarization, the detectability limit is
solely a matter of sufficient sensitivity to the CMB polar-
ization. For a detector of sensitivity s uniformly observing
the entire sky for time t,

rlim � 1022
µ

s
mK sec1�2

∂2µ
t

1 yr

∂21

. (2)

Equation (2) [19] does not take into account a contami-
nating source of B mode that arises from the lensing of
the E mode by density perturbations along lines of sight
between the observer and the last-scattering surface [20].
This scalar contribution to the B-mode power spectrum is
shown in Fig. 1. As we will see below this contamination
sets the detectability limit at rlim � 2.6 3 1024, similar
to what was found in [21].

This lensing contaminant can be cleaned from the maps
as discussed in [22,23]. Here we show that there are limits
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to how well this can be done. Our main result is that
tensor perturbations can be detected only if V

1�4
� . 2 3

1015 GeV. Interestingly, this is below the energy scale
for the gauge coupling-constant convergence at 1016 GeV
in minimal extensions to the standard model of particle
physics (e.g., [24]).

The Stokes parameters, I, Q, and U are related to the
unlensed Stokes parameters (denoted with a tilde) by

I� �u� � Ĩ� �u 1 d �u�Q� �u� � Q̃� �u 1 d �u�U� �u�

� Ũ� �u 1 d �u� . (3)

The deflection angle, d �u, is the tangential gradient of the
projected gravitational potential,

f� �u� � 2
Z

dr
�r 2 rs�

rrs
C�rn̂, r� , (4)

where r is the coordinate distance along our past light
cone, s denotes the CMB last-scattering surface, and n̂
is the unit vector in the �u direction. The effect on the B
mode power spectrum is [20]

CBl � CB̃l 1
X
l0

Wl 0
l CẼl 0 , (5)

where
Wl 0
l �

l03

4

Z p

0
u du

Ω
s2

2 �u�
∑

J0�lu�J2�l0u� 2
1
2

J4�lu� 	J2�l0u� 1 J6�l0u�

∏

1 s2
0 �u� 	J4�lu�J4�l0u� 1 J0�l0u�J0�lu�


æ
.

(6)

The functions s

2
2 �u� and s

2
0 �u� depend on the statistical

properties of the displacement potential f and are given
by

s2
0 �u� �

Z l dl

2p
l2C

f
l 	1 2 J0�lu�
 ,

s2
2 �u� �

Z l dl
2p

l2C
f
l J2�lu� ,

(7)

where

C
f
l � �flmf�

lm� (8)

and flm is the spherical-harmonic transform of f� �u�.
If we have a means of determining f, and therefore

d �u, we can reconstruct the unlensed maps from the lensed
maps by use of Eq. (3). This procedure cleans out the
lensing-induced B mode. The C

f
l above can either be

interpreted as the power spectrum of the lensing potential
(in the case of uncleaned maps, in which case we will call
it C

f�S�
l ) or the power spectrum of the lensing potential

residuals (in the case of lensing-cleaned maps). In the
uncleaned case [25] (in the Limber approximation valid
at small scales):

C
f�S�
l �

8p2

l3 H2
0

Z rs

0
dr r

∑
�r 2 rs�

rrs

∏2

D
2
F�k, r�

Ç
k�l�r

,

(9)

where rs is the comoving distance to the last-scattering sur-
face and D

2
F�k, r� � k3��2p�2PF�k, r�, where PF �k, r�
is the power spectrum of the gravitational potential at the
time corresponding to coordinate distance r on our past
light cone. We plot C

f�S�
l in Fig. 2

We consider the f reconstruction procedure given in
[23] which exploits the fact that lensing leads to a mode-
mode coupling with expectation value proportional to f.
Their estimator is a minimum-variance (MV) average over
pairs of map modes with l fi l0. Since we know the statis-
tics of the signal, C

f
l , we can Wiener filter (WF) the MV

estimate and further reduce the errors in the reconstruction.
The error in the WF estimate of flm has variance:

C
f�WF�
l �

C
f�S�
l C

f�MV�
l

C
f�S�
l 1 C

f�MV�
l

. (10)

The Wiener-filtering is important for l * 500, where
C

f�S�
l �C

f�MV�
l , 1. Note that we assume negligible

uncertainty in the underlying cosmological model, which
we expect to be valid by the time B modes are detected.

Cleaning can greatly reduce the amplitude of C
f
l , as

shown in Fig. 2 where the angular power spectrum of
the residual f is shown for two different experiments.
The first is the “reference” experiment of [23] which
makes temperature maps with weight-per-solid angle of
w � �1 mK arcmin�22 and Q and U maps each with
half this weight, all with 70 (full width at half maximum)
resolution.
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FIG. 2 (color online). Angular power spectrum of projected
gravitational potential f (solid curve) and the power spectrum
of the residuals of different reconstruction procedures: mini-
mum variance for the reference experiment (long dashed line),
Wiener filter for the reference experiment (short dashed line),
and Wiener filter for a noiseless experiment (dotted line).

As can be seen in Fig. 2 a no-noise, perfect angular reso-
lution experiment still results in nonzero f residuals. Al-
though the number of modes at multipole moment � rises
like �, the signal-to-noise ratio for f reconstruction from
each pair of modes is dropping more rapidly. The level
of mode-mode coupling (the signal for lensing reconstruc-
tion) is proportional to the unlensed power spectra which
drop exponentially. The mode-mode coupling noise is the
sample variance of the lensed power spectra and these drop
less rapidly. Higher-order correlations could conceivably
be used for improved f reconstruction. Significant im-
provement is improbable though since these estimators will
likely also have noise (signal) scaling with lensed (un-
lensed) power spectra.

Because the cleaning is not perfect, there is still lensing-
induced scalar B mode in the cleaned maps. In the no-noise
limit the residual scalar B-mode power spectrum, CWF

Bl ,
has been reduced by a factor of 10 from the uncleaned
amplitude, as shown in Fig. 1.

All of the above results are for fsky � 1. Given a de-
tector (or array of detectors) with total sensitivity s and an
amount of observing time t there is an optimal amount
of sky to cover given by f

opt
sky � 1028 �mK�2t�s2. In

Fig. 3 we plot rlim as a function of s2�t assuming optimal
sky coverage (constrained to fsky # 1). The detectability
limit is not strongly sensitive to deviations from optimal
sky coverage, which is fortunate since other considera-
tions can influence sky coverage choice as well. Note that
s2�t � 1028 �mK�2 could be achieved by observing for a
011303-3
year with an array of 30 000 detectors each with sensitiv-
ity 100 mK sec1�2. We have ignored aliasing of the scalar
E mode which can be important for fsky fi 1, as studied
in [21]. Aliasing considerations increase f

opt
sky and rlim.

For s2�t � 1027 �mK�2 and fsky � 1, rlim � 3 3 1024.
Therefore, aliasing effects will not increase rlim by more
than 40% over our results, as shown in Fig. 3.

Increasing reionization redshift decreases the de-
tectability limit, due to the extra low � power (see Fig. 1).
For zri � 10, rlim � 1.4 3 1025 in the s2�t � 0 limit.
Figure 3 also shows results for no reionization, which is
roughly equivalent to ignoring modes with l & 10.

The projected gravitational potential out to some limit-
ing redshift, zlim, can, in principle, be reconstructed from
peculiar velocity measurements [26] or analysis of the
statistical distribution of apparent galaxy shapes. Subtract-
ing the lensing contaminant, calculated from this recon-
struction, from CMB maps leaves only the contribution
from z . zlim. The effect of this remaining lensing can
be calculated by altering the lower limit of integration in
Eq. (9)from 0 to r�zlim�. To improve upon the noise-free
self-cleaned maps result of rlim � 2.4 3 1025, one needs
to take zlim * 7.

Our analysis ignores polarized emission from galactic
and extragalactic sources. Multifrequency observations
can be used to clean out these signals based on their distinct
spectral shapes. However, even in the no-noise limit these
cannot be cleaned perfectly since their spectral shapes are
not perfectly well known and vary spatially (e.g., [27]).
Our estimate of the detectability limit should be viewed as
a lower limit.

FIG. 3 (color online). Achievable detectability limit as a func-
tion of total detector array sensitivity s and observing time t,
assuming optimal sky coverage (solid curves) and one-third of
optimal sky coverage (dashed curves).
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How likely is it that the energy scale of inflation is high
enough to be determined? It is conceivable that V

1�4
� is

as low as 103 GeV [28]. Given even odds between 103

and 1019 GeV the chances are small. On the other hand,
gauge coupling unification gives us a hint that something
interesting may be occurring at 1016 GeV. If inflation has
anything to do with grand unification, or physics at higher
energy scales, then the chances are good.

The likelihood of detection may also be addressed by
better determination of the scalar spectrum. If we as-
sume particular functional forms for V �f� and a scalar per-
turbation spectrum with power-spectral index n, near the
scale-invariant value of unity, then we can give constraints
on the range of possible values of r. Here we follow the
nomenclature and calculations of [12]. Exponential po-
tentials have r � 5�1 2 n� and “small-field polynomial”
potentials �V �f� � L4	1 2 �f�m�p
� with p � 2 having
r � 10 exp	250�1 2 n�
. Still other classes of models
(hybrid inflation and the small-field polynomial potentials
with p . 2) leave little or no relationship between r and
n; r can take on detectable values or vanishingly small
ones. Perhaps the happiest case is the simplest one: poly-
nomial potentials with V�f� � L4�f�m�p. With p $ 2
all have r . 0.1, well above our detectability limit.

In summary, we have calculated how large the ampli-
tude of tensor perturbations must be in order for their
effect on the CMB to be distinguishable from those of
lensing. By reconstructing the lensing potential, using the
mode-mode coupling induced by lensing, one can reduce
the lensing contamination but not eliminate it. The resid-
ual lensing signal prevents detection of tensor perturba-
tions if V� , �2 3 1015 GeV�4. If V� is slightly larger,
then an ambitious observational program may succeed in
determining the energy scale of inflation —possibly a key
step towards finding inflation a comfortable home in a fun-
damental theory of physics.

We thank A. Albrecht, D. Chung, N. Dalal, and J. Kiskis
for useful conversations. We used the program CMBFAST for
some of our calculations [29].
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