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Demonstration of Nondeterministic Quantum Logic Operations Using Linear Optical Elements
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Knill, Laflamme, and Milburn [Nature (London) 409, 46 (2001)] recently showed that nondeterministic
quantum logic operations could be performed using linear optical elements, additional photons (ancilla),
and postselection based on the output of single-photon detectors. Here we report the experimental
demonstration of two logic devices of this kind, a destructive controlled-NOT (CNOT) gate and a quantum
parity check. These two devices can be combined with a pair of entangled photons to implement a
conventional (nondestructive) CNOT that succeeds with a probability of

1
4 .
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One of the main difficulties in any optical approach to
quantum information processing is that nonlinear interac-
tions between single photons are required to implement
logic devices that operate with 100% efficiency. Re-
cently, however, Knill, Laflamme, and Milburn (KLM)
[1] showed that probabilistic quantum logic operations
could be performed using only linear optical elements,
additional photons (ancilla), and postselection based on
the output of single-photon detectors. These devices
succeed in producing the desired logical output with a
probability that can approach unity, and they may form
the basis for a scalable approach to quantum computing.

Here we report the experimental demonstration of two
logic devices of this kind, a destructive controlled-NOT

(CNOT) gate and a quantum parity check [2]. The output of
the destructive CNOT (DCNOT) gate is identical to that of a
conventional (nondestructive) CNOT gate except that the in-
formation associated with the control photon is destroyed
during the operation. However, the destructive CNOT gate
and quantum parity check demonstrated here can be com-
bined with a pair of entangled photons to implement a
conventional CNOT gate that succeeds with a probability
of 1

4 [2].
In the original approach suggested by KLM [1], the

value of each qubit is represented by a single photon that
may be located in one of two paths, such as two optical
fibers. One path represents a logical value of 0 while the
other path represents a value of 1. The logic operations in-
volve interference between different optical paths, which
can be very sensitive to thermally induced phase shifts. In
contrast, we use polarization-encoded qubits [3] in which
the values of the qubits are represented by the two linear
states of polarization of a single photon, with a horizontal
polarization state jH� representing the value 0 and a verti-
cal polarization state jV � representing the value 1. The use
of polarization-encoded qubits can eliminate the need for
any interference between two different optical paths [4],
which may be an advantage in practical applications.

In an earlier theory paper [2], we showed that
polarization-encoded qubits and postselection could be
used to implement a number of nondeterministic quantum
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logic operations, including the quantum parity check and
destructive CNOT gate shown in Fig. 1. In each of these
devices, two input qubits in the form of two single photons
are incident on a polarizing beam splitter that completely
transmits horizontally polarized photons and totally
reflects vertically polarized photons. A polarization-
sensitive detector in output path 20 detects any photons in
either the horizontal-vertical (HV) computational basis or
another basis rotated by 45±. As shown in the insets, the
polarization-sensitive detectors can be implemented using
another polarizing beam splitter and two single-photon
detectors. The output of the devices is accepted only for
those cases in which the detector registers one and only
one photon. This postselection process provides the origin
of the nonlinearity required for the logic operations, since
the detection process is inherently nonlinear.

Although the physical structure of these two devices is
similar, the operation and desired output of each is very
different. The operation of the quantum parity check is the

FIG. 1. Implementation of a quantum parity check (a) and a
destructive CNOT gate (b) using polarizing beam splitters. The
polarizing beam splitter (PBS) is oriented in the HV compu-
tational basis for the parity check and rotated by 45± for the
destructive CNOT. The polarization-sensitive detector D20 con-
sists of a second polarizing beam splitter and two single-photon
detectors. It is oriented in the HV basis for the destructive CNOT
and rotated by 45± for the parity check.
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most straightforward and will be described first, although
the demonstration of the destructive CNOT gate is the most
important result presented here. The goal of the quantum
parity check shown in Fig. 1a is to transfer the value of the
input qubit in path 1 to the output in path 10 provided that
its value is the same as that of the second input qubit in
path 2. If the qubits have different values, the device fails
and produces no output. The parity-check operation can be
understood from the basic properties of a polarizing beam
splitter (PBS) [5]. If only one photon is to be detected,
both of the incident photons must be transmitted or both
must be reflected. In either case, the polarizations and
the corresponding values of the qubits must be the same.
This ability to compare the polarizations of two photons
has been proposed for use in entanglement purification
[5] and a variety of other quantum information processing
applications [6–9].

The parity-check operation described above is essen-
tially classical in nature, but quantum-computing applica-
tions require that it be performed without measuring or
determining the values of either qubit. For the probabilis-
tic quantum parity check illustrated in Fig. 1a, this is ac-
complished by orienting the polarization-sensitive detector
in a basis rotated by 45±, which essentially erases any in-
formation regarding the value of either of the input qubits.
When the inputs consist of an arbitrary superposition of
states, this quantum erasure [10,11] technique combined
with the postselection process maintains the required co-
herence of the probability amplitudes, as will be described
below.

The implementation of the destructive CNOT gate shown
in Fig. 1b is similar to the quantum parity check, except
that the polarizing beam splitter is oriented in a basis ro-
tated by 45± and the polarization-sensitive detector is ori-
ented in the HV basis. The goal of the destructive CNOT
gate is to flip the logical value of the target qubit (e.g.,
0 $ 1) if the control qubit has the value 1 and to do noth-
ing if the control qubit has the value 0. The expected output
of the gate shown in Fig. 1b is that of a conventional CNOT,
except that the information contained in the control qubit
is destroyed by the polarization-sensitive detector. The op-
eration of the destructive CNOT gate can be understood by
expanding the input qubit polarization states in the 45± ba-
sis of the polarizing beam splitter and then reexpressing
the output states in the HV basis of the detector. It can
be shown [2] that an arbitrary target state will be flipped
if the control photon in mode 2 was vertically polarized
(logical value 1) but it will be unaltered for a horizontally
polarized control photon (logical value 0):

Control � 1: ajH�1 1 bjV �1 ! ajV �10 1 bjH�10 ,

Control � 0: ajH�1 1 bjV �1 ! ajH�10 1 bjV �10 .
(1)

Because of the similarity of these two devices, we were
able to demonstrate both logic operations using a single ex-
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FIG. 2. A simplified outline of the experimental apparatus used
to demonstrate the quantum parity check and destructive CNOT
operations of Fig. 1. A 1.0 mm thick BBO down-conversion
crystal (type-II) was pumped by roughly 30 mW of the 351.1 nm
line of an argon-ion laser. PBS1 and PBS2 were polarizing beam
splitters, while M1 and M2 were mirrors mounted on translation
stages. Half-wave plates P1 and P2 were located in each path,
while u10 and u20 were polarization analyzers in front of detectors
D10 and D20 . f1 and f2 were 10 nm FWHM bandpass filters
centered at 702 nm, and SS was a birefringent element for Shih-
Sergienko compensation [12].

perimental setup, which is shown schematically in Fig. 2.
Here the polarizing beam splitters of Figs. 1a and 1b cor-
respond to the second polarizing beam splitter, PBS2, in
Fig. 2. The initial polarizing beam splitter, PBS1, was sim-
ply used to separate the two photons produced in a type-II
parametric down-conversion [12,13] crystal (BBO), which
produces pairs of photons, one polarized vertically, and the
other polarized horizontally. The two photons were then
directed along two different paths towards PBS2. The two
paths were adjusted to the same length using mirrors on
translation stages, which was necessary in order to ensure
that both photons arrived at the second beam splitter at the
same time [14]. The polarization of either photon could be
rotated into any desired orientation using half-wave bire-
fringent plates located in each path.

The polarization-sensitive detectors of Figs. 1a and 1b
were implemented using a rotatable polarization analyzer
u20 and one single-photon detector in output path 20. In
contrast to the polarization-sensitive detectors of Fig. 1,
this arrangement could detect only one of the possible out-
put polarization states and reduced the probability of suc-
cess from 1

2 to 1
4 [2]. Another polarization analyzer u10

and a second single-photon detector were used to measure
the polarization state of the photons in the logical output
path 10, which allowed a comparison between the expected
and actual outputs of the devices. Since only two photons
were incident at any given time, the postselection process
described above was equivalent to monitoring the rate of
coincident detection events as a function of various com-
binations of wave plate and analyzer orientations.

The experimental results from the quantum parity-check
operation are summarized in Figs. 3 and 4. The logical
257902-2
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FIG. 3. Logical truth table summarizing the results from the
quantum parity check. The number of coincidence events per
minute corresponding to 0 or 1 that were obtained for all possible
values of the input qubits is shown. The results are consistent
with what would be expected from a parity-check operation.

truth table of Fig. 3 shows the relative probability of ob-
taining an output value of 0 or 1 for all of the possible
combinations of input values. The half-wave plates were
oriented in this case to give input photons with horizon-
tal or vertical polarizations (0 or 1), and the polarization
analyzer u10 was oriented horizontally or vertically. It can
be seen that the results obtained agree with what would
be expected from a parity check to within an error on the
order of 1%.

A more intriguing property of the quantum parity check
is illustrated in Fig. 4, where the wave plates were adjusted
so that input 2 was in the state jin�2 �

1
p

2
�j0� 1 j1��. As

we showed in Ref. [2], an arbitrary input state in path 1
is expected to be coherently transferred into output path
10 for this choice of input 2. It is interesting to note that
the polarizing beam splitter PBS2 transmits the horizontal
component of input 1 into output path 10 as required, but
it totally reflects the vertical component into detector D20 ,
where it is destroyed. As a result, the device must some-
how replace the arbitrary vertical component from input
1 with a vertical component from input 2 (which is re-
flected into output path 10) even though that component
initially had a fixed value of 1

p
2
. In essence, the postse-

lection process makes the polarizing beam splitter trans-
parent to all components of input 1. For the data shown
in Fig. 4, input 1 was arbitrarily chosen to be in the state
jin�1 � 0.94j0� 1 0.34j1�, which corresponds to a photon
polarized at an angle of approximately 20±. It can be seen
that the output state corresponds to the same polarization
to within the experimental error, which demonstrates the
coherent nature of the quantum parity-check operation.
257902-3
FIG. 4. Experimental test of the coherence of the output of the
quantum parity check. The number of coincidence events per
minute is plotted as a function of the setting of polarization an-
alyzer u10 for an input 1 state corresponding to a polarization
of 20±. The solid curve represents an empirical fit to the data.
The measurements are consistent with an output state with the
same polarization, which demonstrates the coherence of the par-
ity check when acting on superposition states.

The main result of this Letter is shown in Fig. 5, which
shows a logical truth table summarizing the experimental
results for the destructive CNOT gate. Rather than phys-
ically rotating the polarizing beam splitter through a 45±

angle as shown in Fig. 1b, it was more convenient to ro-
tate the incident photons and the detector bases using the
half-wave plates. As mentioned above, the intended func-
tion of the destructive CNOT gate is to flip the target bit if
and only if the control bit is equal to 1. It can be seen
from Fig. 5 that our destructive CNOT gate performs this
operation with an average error of approximately 17% for
the case where all of the input qubits have the value 0 or
1. The mean error for the current setup when averaged
over all possible input states is approximately 8%. These
errors were largely due to the optical quality of the po-
larizing beam splitters, which were of commercial grade
and had distortions on the order of 1

4 wave. Much lower
error rates could be obtained using custom-made polariz-
ing beam splitters and single mode optical fibers. In any
event, the controlled target state-flipping operation of the
destructive CNOT is clearly evident from the data shown in
Fig. 5.

It can be seen that the errors in the destructive CNOT data
of Fig. 5 are much larger than the errors in the quantum
parity-check data of Fig. 3, which can be understood as
follows. When the polarizations of the photons input to
the quantum parity check are either horizontal or vertical
(and not a superposition state), the output does not depend
on quantum interference effects and the results are unaf-
fected by misalignments or birefringence. The destructive
CNOT data of Fig. 5, however, does depend on higher-order
interference between the photons and is thus sensitive to
misalignments and birefringence. The situation is reversed
257902-3



VOLUME 88, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 24 JUNE 2002
FIG. 5. Logical truth table summarizing the results obtained
from the destructive CNOT. The number of coincidence events
per minute corresponding to 0 or 1 that were obtained for all
possible values of the input qubits is shown. The results show
that the destructive CNOT flips the value of the target qubit when
the control qubit has a value of 1, as desired. The errors shown
here correspond to the worst case and could be greatly reduced
using custom-made optics or optical fibers.

for superposition states, in which case the errors in the par-
ity check can be larger than those in the destructive CNOT,
and the average errors are the same for the two devices.

The destructive CNOT operation was also tested using
superpositions of input states. Coherent results similar to
those of Fig. 4 were obtained but are not included here.
Once again, this shows that the operation was performed
without measuring the values of the qubits [2].

The results presented here demonstrate that certain non-
deterministic quantum logic operations can be performed
in a straightforward manner using linear optical elements
[1]. As we have shown earlier [2], the quantum parity
check and destructive CNOT described above can be com-
bined with a pair of entangled photons to implement a non-
destructive CNOT operation with a probability of success
of 1

4 . Experiments of that kind will require the production
of four photons in the same spatial and temporal mode
[15–17], whereas our current experiments required only
two photons. Zeilinger’s group has recently demonstrated
[18] a method for producing the necessary four-photon
state, so that the demonstration of a full nondeterministic
CNOT gate should be feasible. A more difficult challenge
for practical applications is the requirement that the proba-
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bility of success be on the order of unity as is required
by the current state of quantum error correction [19]. In
principle, KLM [1] have shown that it is possible to use
additional ancilla and detectors to achieve a success rate
arbitrarily close to one. We expect that further work in
that area will be required in order to develop a practical
approach to quantum computing. In any event, the ex-
perimental results presented here may provide a first step
towards that goal.

This work was supported by the U.S. Office of Naval
Research and by Independent Research and Develop-
ment funds. We acknowledge valuable discussions with
M. Donegan and M. Fitch.

[1] E. Knill, R. Laflamme, and G. J. Milburn, Nature (London)
409, 46 (2001).

[2] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev.
A 64, 062311 (2001).

[3] D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics
of Quantum Information (Springer-Verlag, Berlin, 2000).

[4] M. Koashi, T. Yamamoto, and N. Imoto, Phys. Rev. A 63,
030301 (2001).

[5] J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Nature
(London) 410, 1067 (2001).

[6] J. W. Pan and A. Zeilinger, Phys. Rev. A 57, 2208 (1998).
[7] D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and

A. Zeilinger, Phys. Rev. Lett. 82, 1345 (1999).
[8] D. Bouwmeester, Phys. Rev. A 63, 040301 (2001).
[9] T. Yamamoto, M. Koashi, and N. Imoto, Phys. Rev. A 64,

012304 (2001).
[10] M. O. Scully and K. Druhl, Phys. Rev. A 25, 2208 (1982).
[11] P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, Phys. Rev.

A 45, 7729 (1992).
[12] Y. H. Shih and A. V. Sergienko, Phys. Lett. A 186, 29

(1994).
[13] M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V.

Sergienko, Phys. Rev. A 50, 5122 (1994).
[14] T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin,

A. V. Sergienko, and Y. H. Shih, Phys. Rev. Lett. 77, 1917
(1996).

[15] M. Zukowski, A. Zeilinger, and H. Weinfurter, Ann. N.Y.
Acad. Sci. 755, 91 (1995).

[16] A. Zeilinger, M. A. Horne, H. Weinfurter, and
M. Zukowski, Phys. Rev. Lett. 78, 3031 (1997).

[17] Z. Y. Ou, Quantum Semiclass. Opt. 9, 599 (1997).
[18] J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and

A. Zelinger, Phys. Rev. Lett. 86, 4435 (2001).
[19] M. A. Nielsen and I. L. Chuang, Quantum Computing and

Quantum Information (Cambridge University Press, Cam-
bridge, U.K., 2000).
257902-4


