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The possibility of realizing the regime of punctuated spin superradiance is advanced. In this regime,
the number of superradiant pulses and the temporal intervals between them can be regulated. This makes
it feasible to compose a kind of a Morse code alphabet and, hence, to develop a technique of processing
information.
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Spin systems can exhibit a phenomenon that is analo-
gous to atomic superradiance [1], because of which it is
called spin superradiance. To realize this phenomenon,
spin systems, similarly to atomic ones, are to be prepared
in an inverted state. This is achieved by placing a polarized
spin sample in an external magnetic field directed opposite
to spin polarization. Contrary to atomic systems, coherent
spin motion develops not owing to direct spin correlations
but due to the interaction of spins with a resonator feedback
field, for which purpose the spin sample has to be coupled
with a resonant electric circuit, whose natural frequency is
tuned to the Zeeman frequency of spins [2]. More details
on similarities and differences between atomic superradi-
ance and spin superradiance can be found in the review [3].
Spin superradiance is the process of coherent spontaneous
emission by moving spins. As in the case of atomic sys-
tems, one may distinguish two main types of this phenome-
non: transient superradiance and pulsing superradiance.
Transient spin superradiance occurs when the spin sample
is prepared in the inverted state, after which no following
pumping is involved. In this case, a single superradiant
burst arises, peaked at the delay time. Pulsing spin super-
radiance is radically different from the transient regime by
the occurrence of a series of superradiant pulses, for which
the spin sample is to be subject to a permanent pumping
supporting the inverted spin polarization. Both regimes
of spin superradiance, transient [4–6] as well as pulsing
[7], were observed in experiments with different mate-
rials containing nuclear spins. A microscopic theory of
these phenomena, based on realistic spin Hamiltonians,
was developed [8–11], being in good agreement with ex-
periment and with computer modeling [12]. It is worth
stressing that, only by invoking microscopic Hamiltonians,
it has become possible to give an accurate description of
purely self-organized regimes which cannot be treated by
the phenomenological Bloch equations [8–10].

In the present paper, we advance the possibility of real-
izing the third type of spin superradiance, which we call
punctuated spin superradiance, and which is principally
different from the transient and pulsing types. In this
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regime, unlike the transient case, not a single but many
superradiant bursts can be produced. In distinction to the
pulsing regime, where the number of pulses and the tempo-
ral distance between them are prescribed by a given setup
and cannot be varied, in the process of punctuated super-
radiance both the number of superradiant bursts as well as
time intervals between each pair of them can be regulated.
The term punctuation here means this feasibility of chang-
ing interpulse intervals and of organizing various groups of
superradiant bursts. In that way, a code, such as the Morse
alphabet, can be composed, which may be employed in
processing information.

The consideration below will be based on the Hamilto-
nian typical for spin systems employed in magnetic reso-
nance [13]. The Hamiltonian reads

Ĥ �
X

i

Ĥi 1
1
2

X
ifij

Ĥij , (1)

where Ĥi corresponds to individual spins, while Ĥij , to
spin interactions, with the indices i, j � 1, 2, . . . , N enu-
merating spins. The individual terms are given by the
Zeeman energy Ĥi � 2m0B ? Si , where m0 � h̄gS , with
gS being the gyromagnetic ratio of spin S, represented by
the spin operator Si, and B is the total magnetic field act-
ing on each spin. The spin interactions are described by
the dipolar terms Ĥij �

P
ab C

ab
ij Sa

i S
b
j , with the dipolar

tensor C
ab
ij . The total magnetic field B � B0ez 1 Hex

consists of a constant longitudinal field B0 and a transverse
field H formed by the resonant electric circuit coupled to
the spin sample. The resonator field H � 4pnj�cl is cre-
ated by the electric current j circulating over a coil of n
turns and length l. The current j is determined by the
Kirchhoff equation. The electric circuit is characterized
by resistance R, inductance L, and capacity C. With the
notation for the circuit natural frequency v � 1�

p
LC and

circuit damping g � R�2L, the Kirchhoff equation can be
presented as

dH

dt
1 2gH 1 v2

Z t

0
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, (2)
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for the resonator magnetic field H, where h is a filling
factor and Mx � �m0�V �

P
i�S

x
i � is the x component of

the magnetization density of a sample with volume V .
Since the resonator field H, acting on spins, is itself due to
the transverse spin motion, this field H is called the feed-
back field.

To derive evolution equations, we follow the scale sepa-
ration approach, described in full detail in Refs. [8–11].
For this purpose, we write the Heisenberg equations of mo-
tion for the lowering, S2

i , raising, S1
i , and polarization, Sz

i ,
operators. In these equations, it is possible to separate the
combinations describing fast fluctuating local fields. Em-
ploying the method of random local fields [13], the latter
are modeled by stochastic Gaussian variables, with zero
mean and the width 2g3, where g3 is the width of inho-
mogeneous dynamic broadening. Then the Heinsenberg
equations are averaged over spin degrees of freedom, not
touching the stochastic variables. Denoting the averaging
over spins by single angle brackets �. . .�, we define the
transition function x, coherence intensity y, and spin po-
larization z, respectively:

x �
1
S

�S2
i �, y �

1
S2 �S1

i � �S2
i �, z �

1
S

�Sz
i � .

(3)

The wavelength of spin radiation is usually much larger
than interparticle distance, because of which the uniform
approximation for Eqs. (3) may be employed.

We direct the external magnetic field B0 so that m0B0 ,

0 and define the Zeeman frequency v0 � jm0B0j�h̄. Also,
introduce the notation f � 2�i�h̄�m0H 1 j for an effec-
tive force acting on spins. Finally, the evolution equations
for the functions (3) can be cast [8–11] to the form

dx

dt
� 2i�v0 1 j0 2 ig2�x 1 fz ,

dy

dt
� 22g2y�x�f 1 f�x�z ,

dz

dt
� 2

1
2

�x�f 1 f�x� 2 g1�z 2 s� ,

(4)

where g1 and g2 are the longitudinal and transverse widths,
respectively, and s is an equilibrium polarization of a spin.
When there is no external stationary pumping, s � 21.
Equations (4) are stochastic differential equations, since
they contain random fields.

To solve Eqs. (4), we invoke a generalization [8–10]
of the averaging technique [14] to the case of stochas-
tic differential equations. This becomes possible owing
to the existence of several small parameters: g0�v0 ø 1,
g1�v0 ø 1, g2�v0 ø 1, and g3�v0 ø 1, where g0 �
phrm

2
0S�h̄ is the natural width and r � N�V is the den-

sity of spins. In addition, the resonant circuit, coupled to
the spin sample, is assumed to be of good quality and tuned
close to the Zeeman frequency v0, so that g�v ø 1,
jDj�v ø 1, with D � v 2 v0.
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First of all, using the occurrence of the small parameters,
we can obtain an iterative solution of the Kirchhoff equa-
tion (2). For this purpose, invoking the method of Laplace
transforms, we present Eq. (2) in the integral form

H � 24ph
Z t

0
G�t 2 t0� �Mx�t0� dt0,

G�t� � �cosv0t 2
g

v0
sin v0t�e2gt ,

(5)

where the overdot means time differentiation and v0 �p
v2 2 g2. Since Mx is expressed through x, its time

derivative �Mx is directly related to the first of Eqs. (4).
Using this, we find the solution of Eq. (5), in the first order
with respect to small parameters, as m0H�h̄ � ia�x 2

x��, where the function

a � gg2�1 2 e2gt�, g �
gg0v

g2�g2 1 D2�
(6)

describes the intensity of coupling between the spin
sample and the resonant circuit. Let us stress that the spin-
resonator coupling (6) depends on time, taking into
account retardation effects.

From Eqs. (4), in the presence of the small parameters,
it follows that the variables y and z are temporal quasi-
invariants with respect to x. Then, we solve the first of
Eqs. (4), with these quasi-invariants fixed, substitute the
found solution x into the second and third of Eqs. (4), and
average the right-hand sides of these equations over time
and over the stochastic fields. As a result, we obtain the
guiding center equations,

dy
dt

� 22�g2 2 az�y 1 2g3z2,

dz
dt

� 2ay 2 g3z 2 g1�z 2 s� .

(7)

In the dynamics of solutions to Eqs. (7), one may dis-
tinguish two stages, quantum and coherent. At the quan-
tum stage, when gt ø 1, the coupling function is close
to zero and no noticeable coherence in the motion of
transverse spins is yet developed. The dynamics is gov-
erned by quantum spin interactions. At this stage, when
a � 0, Eqs. (7) are linear, and their solution is easy. With
increasing time, the spin-resonator coupling (6) grows,
and coherent effects, caused by the resonator feedback
field, gradually come into play. The crossover time be-
tween the quantum and the coherent regimes can be de-
fined as the time tc, at which the first term in the first of
Eqs. (7) changes its sign. This is because the quantity G �
g2 2 az plays the role of an effective attenuation. When
the latter is positive, transverse coherence decays, while a
negative attenuation implies the generation of coherence.
Hence, the moment of time, when G�tc� changes its sign,
separates qualitatively different regimes of spin motion.
The crossover time tc, defined by the equality a�tc� 3

z�tc� � g2, is tc � t ln�gz0��gz0 2 1�	, with gt � 1.
The solutions y and z at this boundary of the quantum
257601-2
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stage are y�tc� 
 y0 1 2g3tcz2
0 and z�tc� 
 z0 1 g1tcs,

where y0 � y�0� and z0 � z�0�. The coherent stage of
motion comes after the crossover time tc, when the spin-
resonator coupling a fastly grows to gg2. Since g3 # g2,
and if g ¿ 1, then gg2 ¿ g3, and the term with g3 can be
omitted. In the transient regime, when t ø T1 � g

21
1 , the

term containing g1 can also be neglected. Then Eqs. (7)
possess the exact solution

y �

µ
gp

gg2

∂2

sech2
µ

t 2 t0

tp

∂
,

z � 2
gp

gg2
tanh

µ
t 2 t0

tp

∂
1

1
g

,

(8)

in which the pulse time tp and the pulse width gp , with
gptp � 1, are defined by the expressions g2

p � g2
g 1

�gg2�2� y0 1 2g3tcz
2
0�, gg � g2�1 2 gz0�, and the delay

time is

t0 � tc 1
tp

2
ln

Ç
gp 2 gg

gp 1 gg

Ç
. (9)

Solution (8) describes a transient superradiant burst, with
the maximal intensity at the delay time t0, when y�t0� �
�z0 2 1�g�2�1 1 2g3tc�, z�t0� � 1�g. After this, for t ¿

t0, the coherence intensity exponentially diminishes and
the spin polarization becomes inverted,

y 
 4y�t0�e22gpt, z 
 2z0 1 2�g . (10)

For sufficiently large coupling parameter g, the reversal of
spin polarization is practically complete.

Now imagine that at some time after t0 1 tp we again
invert the spin polarization from that in Eq. (10) to the
symmetric positive value. For large g, this inversion is
practically from 2z0 to z0. Such an inversion can be re-
alized in three possible ways: inverting the external mag-
netic field B0, acting on spins by a resonant p-pulse, or just
turning the sample 180± about an axis perpendicular to B0.
As a result, we get again a strongly nonequilibrium state of
inverted spins. After the time t0, counted from the moment
when the newly nonequilibrium state is prepared, another
superradiant burst will arise. After the second burst dies
out, one can again invert the spin polarization by one of
the mentioned methods. Then one more superradiant burst
will appear. This procedure can be repeated as many times
as necessary for creating a required number of sharp su-
perradiant pulses. The time intervals between bursts can
be regulated, allowing the formation of different groups
of pulses, with varying intervals between separate groups.
Thus, it is feasible to compose a code, similar to the Morse
alphabet, which can be used in processing information. It
is this possibility of regulating temporal intervals between
superradiant bursts which permits us to call the described
phenomenon punctuated spin superradiance.

Spin superradiance can be realized in different ma-
terials under various experimental setups. Thus, it was
observed on proton spins in propanediol C3H8O2, butanol
C4H9OH, ammonia NH3 [4–6], and on 27Al nuclear
257601-3
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FIG. 1. Punctuated spin superradiance with three different
groups of superradiant bursts. All parameters are explained in
the text. Time is measured in dimensionless units. The time
intervals are t0 � 0.029, t1 � 0.065, t12 � 0.26, t2 � 0.1,
t23 � 0.15, and t3 � 0.025.

spins in ruby Al2O3 [7]. The characteristic parameters
for these experiments with nuclear spins are the density
of spins r � 1022 1023 cm23, the Zeeman frequency
v0 � 108 Hz, the spin-lattice relaxation g1 � 1025 s21,
the spin-spin dephasing parameter g2 � 105 s21, the
dynamic broadening width g3 � 104 105 s21, and the
resonator ringing time t � 1026 s, that is, the resonator
damping g � 106 s21. For these values, the spin-
resonator coupling parameter g in Eq. (6) varies between
10 and 100. As has been shown [15], if nuclear spins
are inside a ferromagnet or ferrimagnet, possessing
long-range magnetic order, then the coupling parame-
ter g can be increased by a factor of mB�mN � 103,
where mB is the Bohr magneton and mN is the nuclear
magneton. Therefore, the coupling parameter g can be
made as large as g � 105. Among other materials, where
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FIG. 2. Punctuated spin superradiance with four groups of
superradiant pulses, the first group containing a single burst,
the time intervals being t0 � 0.024, t12 � 0.226, t2 � 0.025,
t23 � 0.35, t3 � 0.075, t34 � 0.275, and t4 � 0.1.
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FIG. 3. Punctuated spin superradiance with a comb of
equidistant pulses, starting at t0 � 0.024, having time inter-
vals t1 � 0.1.

spin superradiance could, in principle, be observed, are
granular magnets and molecular magnets. In this way,
there exists a large variety of materials with different
characteristics allowing for the optimal choice of parame-
ters for realizing punctuated spin superradiance. Note
that the intervals between superradiant pulses can be
varied in a very wide diapason of the order of T1 � g

21
1 .

For nuclear magnets, with g1 � 1025 s21, this time T1
may be as much as several days; and, for molecular
magnets at low temperatures, it could range up to months.

To illustrate the feasibility of creating different groups
of superradiant pulses, with varying time intervals, we
solved Eqs. (7) numerically. Different time intervals are
obtained by changing the moments of polarization inver-
sion. For the characteristic parameters, those are taken
that are typical of nuclear magnets [4–7]. In particular,
we take g1 � 1025 s21, g2 � 105 s21, and g3 is varied
between 104 and 105 s21. The variation of g3 even in
a wider diapason does not essentially change the picture.
The coupling parameter g has also been varied between
10 and 103; the whole picture being qualitatively the same,
with the main difference that for larger g the spin inver-
sion, according to Eq. (10), is better. For the presenta-
tion in Figs. 1to 3, we set g � 103. In the absence of
dynamic nuclear polarization, s � 21. The resonator at-
tenuation g � 106 s21. Finally, as initial conditions we
take y�0� � 0 and z�0� � 1. The first of the latter tells that
at the initial time the transverse coherence is absent. That
is, we consider a purely self-organized process when radia-
tion coherence arises in a spontaneous manner. Figures 1to
3 give some examples of how it is possible to create dif-
ferent bunches of superradiant bursts. The shown function
y�t� is proportional to radiation intensity. The meaning of
this function, according to its definition (3), is to describe
the level of coherence in the system. As seen from the fig-
ures, the maxima of superradiant bursts display a high level
of coherence, almost reaching 100%. The time variable
in the figures is measured in units of T2 � g

21
2 . The short
257601-4
time scale is chosen here just for the convenience of pre-
sentation. As explained above, the same picture can be
stretched to the time scale characterized by T1, which, for
nuclear magnets, would range up to several days. The first
superradiant burst occurs at the delay time t0. To sim-
plify the figure captions, we accept the notation for the
time intervals between the pulses of the i group as ti

and for the intervals between the i and j groups as tij .
Figure 3 demonstrates that a regime of equidistant super-
radiant pulses can also be realized. Such a regime can be
used for producing spin masers [9] operating in pulsing
superradiant mode.

In conclusion, we have demonstrated, both analytically
and numerically, the feasibility of realizing the regime of
punctuated spin superradiance. In this regime, one may
form various groups of superradiant bursts, with different
spacing between the pulses inside each group as well as
with different time intervals between the groups. The pos-
sibility of so punctuating spin superradiance can be em-
ployed for processing information.
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