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Nonlinear ac Resistivity in s-Wave and d-Wave Disordered Granular Superconductors

Mai Suan Li,1 Hoang Zung,2 and D. Domínguez3

1Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland
2Vietnam National University, Ho Chi Minh City, Vietnam

3Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Rio Negro, Argentina
(Received 20 November 2001; published 10 June 2002)

We model s-wave and d-wave disordered granular superconductors with a three-dimensional lattice of
randomly distributed Josephson junctions. The nonlinear ac resistivity r2 of these systems was calculated
using Langevin dynamical equations. The current amplitude dependence of r2 at the peak position
is found to be a power law characterized by exponent a, which is not universal but depends on the
self-inductance and current regimes. In the weak current regime a is independent of the self-inductance
and a � 0.5 6 0.1 for both s- and d-wave materials. In accord with experiments, we find a � 1 for
some interval of inductance in the strong current regime.
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The symmetry of the superconducting pairing function
has been of great interest lately. The gap of conventional
superconductors has s-wave symmetry whereas there is
now good evidence that the superconducting gap of the
high-Tc cuprates has d-wave symmetry [1]. Granular su-
perconductors are usually described as a random network
of superconducting grains coupled by Josephson links
[2,3]. In high-Tc ceramics, depending on the relative
orientation of the d-wave superconducting grains, it is
possible to have weak links with negative Josephson
coupling [4], which are called p junctions. The existence
of these p junctions may cause, e.g., the paramagnetic
Meissner effect [4] observed at low magnetic fields [5].

Recently, Kawamura [6] proposed that a novel thermo-
dynamic phase may occur in zero external magnetic field
in unconventional superconductors. This phase is charac-
terized by a broken time-reversal symmetry and is called
the chiral glass phase. The frustration effect due to the
random distribution of p junctions leads to a glass state of
quenched-in “chiralities,” which are local loop supercur-
rents circulating over grains and carrying a half-quantum
of flux [7]. Evidence for the transition to chiral glass has
been seen from experimental studies of the nonlinear ac
magnetic susceptibility [8], the dynamic scaling [9], and
the aging phenomenon [10]. The susceptibility measure-
ments of Ishida et al. [11] do not, however, support the
existence of the chiral glass.

In order to further probe the existence of the chiral
glass phase Yamao et al. [12] have measured the ac linear
resistivity r0 and the nonlinear resistivity r2 of ceramic
superconductor YBa2Cu4O8. r2 is defined as the third co-
efficient of the expansion of the voltage V �t� in terms of
the external current Iext�t�:

V � r0Iext 1 r2I3
ext 1 . . . . (1)

When the sample is driven by an ac current Iext�t� �
I0 sin�vt�, one can relate r2 to third harmonics V 0

3v in
the following way:
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r2 � 24V 0
3v�I3

0 ,

V 0
3v �

1
2p

Z p

2p
V �t� sin�3vt� d�vt� .

(2)

Yamao et al. have made two key observations. First,
since the linear resistivity does not vanish at the peak po-
sition of r2 they identify the transition as a transition to
the chiral glass phase. The second interesting observation
is the power law dependence of jV 0

3v �Tp���I0�3j (or of r2)
at its maximum position Tp on I0: jV 0

3v�Tp��I3
0 j � I2a

0 .
The experimental value of the power law exponent was
a � 1.1. Using the XY-like model for d-wave supercon-
ductors Li and Dominguez [13] were able to reproduce
the experimental results of Yamao et al. [12] qualitatively.
The quantitative agreement was, however, poor and the
role of inductance was not explored. Namely, a was
computed only for one value of dimensionless inductance
L̃ � 1 and with large error bars [13]: a � 1.1 6 0.6.

The goal of this Letter is twofold. First, we calculate a

with high accuracy for both s- and d-wave systems using
the Langevin equations for the XY-like model with screen-
ing. Second, we try to answer the question if it is possi-
ble to discriminate between s- and d-pairing symmetry by
measurements of a. We show that there are two distinct
current regimes for a. In the weak current regime (WCR)
(small I0) this exponent does not depend on the induc-
tance and a � 0.50 6 0.1 for s- and d-wave ceramics. In
the strong current regime (SCR) a depends on the screen-
ing. For small L̃ we obtain ad-wave . as-wave, possibly
because in the weak screening limit the energy landscape
of the d-wave case is more rugged than the s-wave case.
As the self-inductance increases the number of energy lo-
cal minima gets smaller [14] and the behavior of the two
systems becomes more similar, with the values of a being
almost the same. For the d-wave system in the SCR and
with 1 , L̃ # 5 we find a � 1.0 which agrees with the
experimental value [12].
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We consider the following “coarse grained” Hamiltonian
[15–17]:

H � 2
X
�ij�

Jij cos�ui 2 uj 2 Aij� 1
1

2L

X
p

F2
p , (3)

where ui is the phase of the condensate of the grain at the
ith site of a simple cubic lattice, Jij denotes the Josephson
coupling between the ith and jth grains, L is the self-
inductance of a loop (an elementary plaquette), while the
mutual inductance between different loops is neglected.
The first sum is taken over all nearest-neighbor pairs and
the second sum is taken over all elementary plaquettes on
the lattice. Fluctuating variables to be summed over are the
phase variables, ui , at each site and the gauge variables,
Aij �

2p

f0

Rj
i

�A� �r� d �r, at each link. Fp �
f0

2p

Pp
�ij� Aij is

the total magnetic flux threading through the pth plaquette,
and f0 denotes the flux quantum. The effect of screening
currents inside grains is not considered explicitly, since for
large length scales they simply lead to a Hamiltonian H
with an effective self-inductance L [17].

For the d-wave superconductors we assume Jij to be
an independent random variable taking the values J or
2J with equal probability (6J or bimodal distribution),
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each representing 0 and p junctions. For the s-wave su-
perconductors Jij is always positive but distributed uni-
formly between 0 and 2J. It should be noted that model (3)
with uniform couplings was first studied by Dasgupta and
Halperin [18]. Random p-junction models (in which Jij

is allowed to take negative values with certain probabil-
ity) have also been adequate to explain several phenomena
observed in high-Tc superconductors such as the anoma-
lous microwave absorption [14,19], the compensation ef-
fect [20], the effect of applied electric fields in the apparent
critical current [21], and the aging effect [22].

In order to study transport properties, we use the resis-
tively shunted junction model [3]. Then in addition to the
Josephson current one has the contribution of a dissipa-
tive Ohmic current due to an intergrain resistance R and
the Langevin noise current. We have redefined notation:
the site of each grain is at position n � �nx, ny , nz� (i.e.,
i � n); the lattice directions are m � x̂, ŷ, ẑ; the link vari-
ables are between sites n and n 1 m (i.e., link ij � link
n, m); and the plaquettes p are defined by the site n
and the normal direction m [i.e., plaquette p � plaquette
n, m; for example, the plaquette n, ẑ is centered at po-
sition n 1 �x̂ 1 ŷ��2]. Then the gauge invariant phase
differences um�n� � D1

mu�n� 2 Am�n� obey the follow-
ing equations [3,15]:
h̄
2eR

dum�n�
dt

� 2
2e
h̄

Jm�n� sinum�n� 2 dm,yIext 2
h̄

2eL
D2

n 	D1
n um�n� 2 D1

mun�n�
 2 hm�n, t� ,

�hm�n, t�h 0
m�n0, t0�� �

2kT
R

dmm0dnn0d�t 2 t0� ,
(4)
where hm�n, t� is the Langevin noise current. The for-
ward difference operator is D1

mun�n� � un�n 1 m� 2

un�n� and the backward operator is D2
mun�n� �

un�n� 2 un�n 2 m�. In what follows we consider cur-
rents normalized by IJ � 2eJ�h̄, time by t � f0�2pJR,
voltages by RIJ , temperature by J�kB, and inductance
by f0�2pJ. Free boundary conditions and numerical
integration are implemented in the same way as in [13,15].
Depending on values of I0 and v the number of samples
used for the disorder averaging ranges between 5 and
800. The number of integration steps is chosen to be
105 5 3 105.

The temperature dependence of the nonlinear resistiv-
ity r2 of the s-wave system for I0 � 0.1 and for different
values of v is shown in the upper panel of Fig. 1. Simi-
lar to the d-wave case [13], there is no visible depen-
dence on v. As seen in the lower panel, as I0 decreases
peak values of r2 tend to diverge. For L̃ � 1 the peak
is located at Tp � 1.4 and it coincides with the metal-
superconductor transition at which thermodynamic quanti-
ties diverge and the linear resistivity r0 vanishes. It should
be noted that our disordered s-wave model is different from
the gauge glass model [23] (in the latter case the screening
spoils the transition to the superconducting state). Figure 2
shows the I0 dependence of maxjV 0

3v�I3
0 j of the s-wave
samples �L̃ � 1�. Clearly, we have two distinct regimes
for small and large currents. In the WCR �I0 # 0.1�
a � 0.50 6 0.04 and a � 0.51 6 0.03 for l � 8 and
l � 12, respectively. In the second regime we obtain a �
1.0 6 0.05 and a � 1.07 6 0.02 for l � 8 and l � 12,
respectively. Since within the error bars the finite system
size effect is negligible, we consider only the system size
l � 8.

Figure 3 shows the dependence of maxjV 0
3v�I3

0 j on I0 for
the d-wave case (l � 8 and v � 0.001). In the weak cur-
rent part one has a � 0.51 6 0.03, 0.45 6 0.05, 0.48 6

0.05, and 0.43 6 0.06 for L̃ � 0.1, 1, 10, and 20, respec-
tively. Clearly, within error bars a is not sensitive to the
screening. In the SCR it becomes dependent on L̃: a �
1.8 6 0.16, 1.56 6 0.17, 0.97 6 0.02, and 0.60 6 0.02
for L̃ � 0.1, 1, 10, and 20, respectively. Figure 4 shows
the results obtained in the SCR for s- and d-wave systems
with different values of L̃. The power law region of the
d-wave case is sensitive to the screening and is narrower
than its s-wave counterpart.

The dependence of a on L̃ in the SCR is shown in
Fig. 5. Such a dependence may be understood taking into
account the interplay between the thermal fluctuations and
the rugged energy landscape. In the weak screening limit
257004-2
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(a)

(b)

FIG. 1. (a) Upper panel: the temperature dependence of
V 0

3v�I3
0 for the s-wave system. System size l � 8, L̃ � 1, and

I0 � 0.1. The open triangles, squares, and hexagons correspond
to v � 0.001, 0.0005, and 0.0002, respectively. The peak
is located at Tp � 1.4. (b) Lower panel: the same as in the
upper panel but v � 0.001. The open triangles, squares, and
hexagons correspond to I0 � 0.2, 0.1, and 0.05, respectively.
The results are averaged over 15–40 samples.

the latter plays an important role and a of the d-wave sys-
tem is bigger than that for the s-wave one. As L̃ increases
the thermal fluctuations take over and the opposite situa-
tion would happen. The pronounced difference between
two types of symmetry is seen only in the weak screening
region.

FIG. 2. The current dependence of maxjV 0
3v�I3

0 j for s-wave
superconductors. We choose v � 0.001 and L̃ � 1. In the
WCR a � 0.50 6 0.04 and 0.51 6 0.03 for the system size
l � 8 and 12, respectively. In the SCR a � 1.0 6 0.05 and
a � 1.07 6 0.02 for l � 8 and l � 12, respectively. The re-
sults are averaged over 5–800 samples.
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FIG. 3. The current dependence of maxjV 0
3v�I3

0 j for the
d-wave system. We choose the system size l � 8, v � 0.001,
and L̃ � 0.1, 1, 10, and 20 (its values are shown next to the
curves). For each inductance one has two distinct current
regimes. The results are averaged over 10–800 samples.

It is tempting to interpret the two regimes for a as the
WCR corresponding to the critical regime for r2�Tc , I0�
(since I0 ! 0) and the SCR corresponding to a mean-field
regime (away from criticality). If there is a continuous
phase transition at a critical temperature Tc � Tp, then
current-voltage scaling [24] predicts that V � I �z11���d21�

at Tc, with z the dynamical exponent. Therefore, the non-
linear resistivity should be r2�Tc� � I

�z11���d21�23
0 , and

thus the expected WCR value is a � �5 2 z��2 in d � 3.

FIG. 4. The current and self-inductance dependence of
maxjV 0

3v�I3
0 j for d- and s-wave systems in the SCR for

L̃ � 0.5, 5, and 15 (they are shown next to the curves). We
choose the system size l � 8 and v � 0.001. The results are
averaged over 5–10 samples.
257004-3
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FIG. 5. Dependence of a on L̃ in the SCR for s- and d-wave
systems.

This predicts that a peak in r2�T� at Tc is possible if z , 5
(i.e., a . 0). In our case, we obtain a � 0.5 and there-
fore z � 4 for the disordered s-wave transition.

In the experiment of Ref. [12] the temperature Tp is
merely an intergrain ordering transition temperature above
which the thermoremanent magnetization disappears. In
the previous simulations of [13] for the d-wave system,
Tp is the temperature where there is an onset of positive
magnetization, i.e., the paramagnetic Meissner effect starts
to be observed, but it does not seem to correspond to a
phase transition. The chiral glass phase transition tempera-
ture Tcg is found at a lower temperature, Tcg , Tp (for
L � 1, e.g., Tcg � 0.29 [7]). Kawamura [25] has found
that z � 6 . 5 for the chiral glass transition, and thus no
peak in r2�T� is expected for this transition according to
the scaling argument. Therefore, the peak measured by Ya-
mao et al. may not correspond to the chiral glass transition,
but to the crossover we find at Tp for the d-wave case.

In order to compare our results with experiments we
first show that Yamao et al. [12] performed measurements
in the SCR. Since real current is I �

2eJ
h̄ I0, J � 102 K

and I0 � 1021 we have I � 1022 mA. On the other hand,
the current used in experiments I � 10 mA suggests that
the experiments were performed in the SCR. As seen
from Fig. 5, the value of a in the SCR for 1 , L̃ , 5
coincides with the experimental value [12]. This interval
of inductance is realistic for ceramics [26] because typical
values of L̃ are bigger than 3. An accurate comparison
between theory and experiments requires, however, the
knowledge of L̃ which is not known for the compound
of YBa2Cu4O8 studied in Ref. [12].
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In conclusion, we have calculated the nonlinear ac
resistivity exponent a for s and d-wave granular super-
conductors with high accuracy. Our results reveal two
distinct current regimes. In the WCR a is independent of
the screening strength and of types of pairing symmetry.
In the opposite case this exponent depends on L̃. A
difference between s- and d-wave symmetries in the
nonlinear resistivity can be found only in samples with
weak screening. The agreement between simulation and
experimental results is possible for some interval of L̃.
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