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The ground-state energy of the two-dimensional uniform electron gas has been calculated with a
fixed-node diffusion Monte Carlo method, including backflow correlations, for a wide range of electron
densities as a function of spin polarization. We give a simple analytic representation of the correlation
energy which fits our simulation data and includes several known high- and low-density limits. This
parametrization provides a reliable local spin density energy functional for two-dimensional systems and
an estimate for the spin susceptibility. Within the proposed model for the correlation energy, a weakly
first-order polarization transition occurs shortly before Wigner crystallization as the density is lowered.
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The two-dimensional electron gas (2DEG), realized in
semiconductor heterostructures [1], exhibits an extremely
rich phenomenology at low density, where correlations
play an important role. Being outside the reach of
perturbative approaches, many crucial aspects of this
interesting physics still lack a satisfactory explanation
[2]. Under these circumstances, valuable information
can be gained from simplified models, such as the ideal
2DEG (strictly 2D electrons interacting via a 1�r po-
tential within a uniform, rigid neutralizing background).
At zero temperature, the state of this system is entirely
specified by the coupling parameter rs � 1�

p
pn aB,

where n is the density and aB is the Bohr radius, and
the spin polarization z . Even for such a simple model
the theory has greatly benefited from numerical work,
resulting— at least for a limited range of physical prop-
erties and/or system sizes —in benchmark results, input
quantities for approximate theories, and aspects of the
ground-state phase diagram. The quantum Monte Carlo
(QMC) method (see, e.g., Ref. [3]), for example, has
accurately predicted [4,5] the critical density for Wigner
crystallization of the ideal 2DEG, later observed experi-
mentally [6], and has characterized [7] the polarization
transition as being weakly first order and occur-
ring shortly before crystallization as the density is
lowered.

In this work, we present extensive QMC simulations of
the liquid phase within the whole range of density and po-
larization, and we provide an analytic expression for the
correlation energy ec as a function of rs and z . Previous
estimates of the z dependence were based on interpolation
conjectures between the energy of the paramagnetic and of
the fully polarized liquid [4,8], but, as shown later, these
estimates may significantly depart from the calculated en-
ergy at intermediate polarization.

The interest in the z dependence stems from its use in
the spin-density functional theory of two-dimensional sys-
tems [8–10], in the development of density functionals in
the presence of magnetic fields [11], and, more generally,
in the study of the spin-polarization transition, whose role
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on transport properties [2] is prompting intense experimen-
tal investigation [12].

Our combination of numerical results and known ana-
lytic properties yields an estimate of the paramagnetic sus-
ceptibility. At low density, this is an extremely difficult
quantity to evaluate with approximate theories [13] due
to the need of disentangling the tiny —but important —
effect of quantum statistics from the huge effect of cor-
relation. Finally, since we include the effect of backflow
correlations [14] as explained below, our ec�rs, z � provides
a more accurate phase diagram than previously reported
[4,5]. Hartree atomic units are used throughout this work.

Numerical results.—Our calculations use standard
fixed-node diffusion Monte Carlo (FN-DMC) [3], which
projects the lowest-energy eigenstate F of the many-body
Hamiltonian with the boundary condition that F vanishes
at the nodes of a trial function C. The algorithm simulates
the imaginary-time evolution by a branching random walk
of M copies of the N-electron system, using a short-time
approximation of the importance-sampled Green’s func-
tion [3]. For each of the densities corresponding to
rs � 1, 2, 5, 10 we have considered about 20 values of
N [15] and 10–12 polarizations z � �N " 2 N #��N . A
few simulations have been done also for rs � 40, z � 1.
The electrons are placed in a square box with periodic
boundary conditions. Long-ranged interactions are dealt
with by a model potential [Eq. 68 of Ref. [16] ] which has
been shown to give smaller finite-size corrections than
Ewald sums for the electron gas. The bias introduced
by the finite population M of walkers and the finite time
step t was evaluated for selected systems and interpolated
for all the others, according to standard procedures. To
estimate the difference D between the energy eN �rs, z �
of the finite system and its thermodynamic limit e�rs, z �,
defined as N ! ` at fixed density, we adopted a less
usual strategy. Rather than a separate size extrapolation
for each density based on variational energies [4,5,14],
we performed a global fit directly based on FN-DMC
energies, which exploits two physically motivated ingre-
dients: (i) the Fermi-liquid –like size correction [17]
© 2002 The American Physical Society 256601-1
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D�rs , z , N� � eN�rs, z � 2 e�rs, z �
� d�1 1 lz 2� �tN �rs, z � 2 ts�rs, z ��

2 �h 1 gz 2��N (1)

[tN is the energy per particle of N noninteracting elec-
trons confined in a 2D box of side L � �N�n�1�2 with
periodic boundary conditions, ts � �1 1 z2��2r2

s is equal
to limN!`tN with n kept fixed, and d,l, h, g are rs-
dependent parameters] and (ii) an analytic expression for
e�rs, z �, detailed below, which involves 12 more free pa-
rameters. On these grounds, all the FN-DMC energies
eN�rs, z � calculated here for rs � 1 to 10, plus those
of Ref. [7] for rs � 20 and 30, plus the energy (inde-
pendently extrapolated to the thermodynamic limit) for
rs � 40, z � 1— a total of 122 data— formed the input
for a best fit of the 36 free parameters, 24 of which disap-
pear from the final analytic expression since they concern
only the size extrapolation. This fit yields a reduced x2 of
3.8. More details will be reported elsewhere.

The fixed-node approximation is variational
in character [3], and its accuracy depends on
the nodal structure of C. We choose a Slater-
Jastrow trial function C�R� � J�R�D"�R�D#�R�, where
R � �r1, . . . , rN � represents the electronic coordi-
nates, J�R� � exp�

P
i,j usi ,sj �rij�� is a symmetric

Jastrow factor with different pseudopotentials usi ,sj

for like- and unlike-spin pairs [18], and D"�#� is
a Slater determinant for spin-up(down) electrons.
The standard choice with homogeneous systems is
to use plane waves (PW) as single-particle orbitals:
D

"�#�
PW � det�exp�iki ? rj�� [15]. However, within the

fixed-node approximation, better results are obtained
with backflow (BF) correlations in the wave func-
tion [14], D

"�#�
BF � det�exp�iki ? xj��, with xi � ri 1PN

jfii hBF�rij� �ri 2 rj�. Since BF simulations are consid-
erably more demanding than those with PW determinants,
we calculated BF energies only for z � 0, N � 58 and
z � 1, N � 57 for each density, including correlation
functions hBF�r� as described in Ref. [14], optimized
with variational Monte Carlo simulations [3] in each
case. The expected error with BF nodes is much smaller
than the difference between the PW and BF energies.
For rs � 1, an exact calculation [19] shows agreement
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TABLE I. FN-DMC energies with plane wave or backflow nodes. Data pertain to simulations
with N � 58 for z � 0 and N � 57 for z � 1, M � 200 and t � 0.002, 0.01, 0.1, 0.3, 1.0,
2.0 in order of increasing rs.

Plane waves Backflow
rs z � 0 z � 1 z � 0 z � 1

1 20.2013�1� 0.131 47(2) 20.203 72�4� 0.131 09(4)
2 20.255 802�4� 20.193 349�1� 20.257 21�3� 20.193 59�2�
5 20.149 134�9� 20.143 520�5� 20.149 518�9� 20.143 610�7�

10 20.085 270 6�4� 20.084 555�2� 20.085 427�6� 20.084 584�2�
20 20.046 241�1� 20.046 238 5�6� 20.046 283�1� 20.046 248 8�8�
30 20.031 923�1� 20.031 929 8�6� 20.031 941�2� 20.031 938�1�
with the BF result within the statistical error. The BF
results are compared with PW energies in Table I. For
other values of N and z , the effect of backflow is es-
timated as a quadratic interpolation in z and appended
to PW energies, under the further assumption that the
size dependence is the same for BF and PW: the �120
FN-DMC data used in the fit of Eq. (1) are the calculated
PW energies, corrected for the time step and population
bias, and shifted by the estimated backflow effect —the
infinite-size extrapolation being given as a result of the fit.

As expected [7], BF correlations lower the energy more
in the paramagnetic than in the polarized phase. At large
rs, this relative gain of the paramagnetic phase is a signifi-
cant fraction of the difference in energy between the two
phases.

Analytic representation for ec�rs, z �.—We parametrize
the energy e�rs, z � as follows. We first noticed that the
spin-polarization dependence of the exchange-correlation
energy, exc � e 2 ts, as given by the DMC data, is very
well described by the simple form c0 1 c1z2 1 c2z4 for
rs * 5. On the other hand, the known high-density limit
[20,21],

exc�rs, z � � ex�rs, z � 1 a0�z � 1 b0�z �rs lnrs 1 O�rs� ,
(2)

contains non-negligible contributions from higher pow-
ers of z : the dominating exchange term ex is equal to
22

p
2 ��1 1 z �3�2 1 �1 2 z �3�2��3prs. Since we want

to interpolate the energy between high and low density,
we choose a functional form for the correlation energy
ec � exc 2 ex which quenches the contributions from ex

beyond fourth order in z as rs increases,

ec�rsz � � �e2brs 2 1�e�6�
x �rs, z �

1 a0�rs� 1 a1�rs�z 2 1 a2�rs�z 4, (3)

where e
�6�
x �rs, z � � ex�rs, z � 2 �1 1

3
8z 2 1

3
128 z4� 3

ex�rs, 0� is the Taylor expansion of ex beyond fourth
order in z . Since the first term on the right-hand side of
Eq. (3) contains powers 6 and higher of z , it is immediate
to identify the function a0�rs� as the correlation energy
at zero polarization, a0�rs� � ec�rs, 0�. Furthermore,
a1�rs� � 2�≠2ec�rs, z ��≠z 2�z �0 (spin stiffness), and
256601-2
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a2�rs� � 24�≠4ec�rs, z ��≠z 4�z �0. Our choice for the
functions ai�rs� is a generalization of the Perdew-Wang
[22] form to the 2D case,

ai�rs� � Ai 1 �Birs 1 Cir
2
s 1 Dir

3
s �

3 ln

µ
1 1

1

Eirs 1 Fir
3�2
s 1 Gir2

s 1 Hir3
s

∂
,

(4)

which features both the subleading contributions of the
expansion (2) and terms in r21

s and r
23�2
s for rs ! ` [23].

With suitable constraints, which leave only 12 independent
parameters in Eqs. (3) and (4), our correlation energy sat-
isfies exactly several known high-density and low-density
limits: (i) the exact values [20,21] of a0�z � and b0�z �
of Eq. (2) at z � 0 and z � 1, (ii) the vanishing of the
correlation energy in the rs ! ` limit, which implies that
Di � 2AiHi , and (iii) the requirement that e�rs, z � be
independent of z for rs ! `, recovering the low-
density behavior e ! 2m�rs 1 n�r

3�2
s 1 O�r22

s � [23]
with positive m and n independent of z .

The optimal values of the parameters are listed in
Table II. In the high-density limit, we can compare the
z dependence of our correlation energy with the exact
one [20], finding very good agreement, as shown in the
left panel of Fig. 1, where the widely used exchange-like
interpolation [8] is also reported. In the right panel,
we instead see the z dependence of the total energy at
rs � 25.56 where, according to our results, the transition
to the fully polarized gas occurs. At such low densities,
the exchange-like interpolation scheme (here performed
using our energy values at z � 0 and z � 1) significantly
deviates from the QMC result. Both predict a sudden
transition from the z � 0 to the z � 1 fluid, but the
energy barrier between the two phases given by QMC is
more than an order of magnitude smaller, which reflects
in a very large value of the spin susceptibility.

Spin susceptibility.— In our parametrization, the spin
susceptibility x of the ideal 2DEG is simply

x

x0
�

∑
1 2

p
2

p
rs 1 2r2

s a1�rs�
∏21

, (5)

TABLE II. Optimal fit parameters for the correlation energy,
as parametrized in Eqs. (3) and (4). Values labeled with � are
obtained from exact conditions. The parameter Di � 2AiHi is
not listed (see text); the parameter b is equal to 1.3386.

i � 0 i � 1 i � 2

Ai 20.1925� 0.117 331� 0.023 418 8�

Bi 0.086 313 6� 23.394 3 1022 20.037 093�

Ci 0.057 234 27.667 65 3 1023� 0.016 361 8�

Ei 1.0022 0.4133 1.424 301
Fi 20.020 69 0� 0�

Gi 0.340 6.684 67 3 1022 0�

Hi 1.747 3 1022 7.799 3 1024 1.163 099
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where a1 is given by Eq. (4) and Table II. As mentioned, it
turns out that x is a very delicate quantity, so that different
theoretical predictions significantly depart from each other
at rs as low as 3 or 4 [13].

In Fig. 2, we compare our result with other estimates
of x. The result of the Yarlagadda and Giuliani (YG)
calculation [13] blows up already at rs � 4. The ten-
dency to predict a polarization transition at too high den-
sities is shared by several approximate theories [13]. The
exchange-like interpolation [8] is significantly lower than
the QMC estimate, as expected from Fig. 1. Out of two
recipes given in Ref. [4], based on a quadratic interpo-
lation of the z dependence of the total energy �QIetot�
and of the correlation energy �QIec�, respectively, the for-
mer (which yields by definition a divergent x at the po-
larization density) is quite accurate for rs & 10, whereas
the latter greatly underestimates the spin-susceptibility at
all but the smallest rs (here the quadratic interpolation
has been performed using our energy values at z � 0 and
z � 1).

Our spin susceptibility is related to the second
derivative of the model correlation energy, which in-
corporates an optimal interpolation of the QMC results
and is constrained by known limiting behaviors at
very low and very high densities. For this reason it
represents a considerable progress over existing theo-
ries, providing a sound reference for further studies.
Nevertheless, the precise value of x at very large rs

(say, above 20) has to be taken with some caution. When
the z dependence of e�rs, z � is extremely weak (see the
lower curve in the right panel of Fig. 1) the calculation
of its derivatives is beyond the accuracy of the present
calculation, due to the fixed-node bias, the assumption
of quadratic contributions from BF correlation, possible
uncertainties from the size extrapolation, statistical noise,
and the chosen functional form of ec, Eq. (3). The
very nature of the polarization transition, weakly first
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FIG. 1. Left panel: z dependence of the correlation energy in
the high-density limit. Our result is compared with the exact
values from Ref. [20] and with the exchange-like interpolation
of Ref. [8]. Right panel: z dependence of the total energy at the
polarization transition density, rs � 25.56. The value at z � 0
has been subtracted, and the result multiplied by 105. Our result
is compared with the exchange-like interpolation.
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FIG. 2. Spin susceptibility for the 2DEG as a function of rs .
The present result is compared with the exchange-like approxi-
mation [8], with two quadratic interpolations [4] based on the
total energy �QIetot� and on the correlation energy �QIec�, and
with the YG [13] calculation.

order according to Fig. 1, is clearly based on the above
approximations and assumptions.

Phase diagram.—The above results allow us to draw
the zero-temperature phase diagram shown in Fig. 3,
relative to the Wigner crystal, the paramagnetic liquid
(PL), and the ferromagnetic liquid (FL). Intermediate-
polarization phases never represent the stable phase in
2D (Ref. [7] and Fig. 1). For the fluid phases, the energy
e � ts 1 exc is given by Eq. (3) with the parameters of
Table II. The energy of the crystal is taken, instead, from
Ref. [5], since neither backflow nor spin polarization play
a significant role in the solid phase [24].

Similar FN-DMC studies, using plane-wave nodes, have
been previously performed [4,5]. According to Ref. [4],
crystallization occurs directly from the PL, although, at
freezing, the energies of all three phases are very close
to each other. Subsequent PW-based simulations [5,14]
revised slightly upwards the energy of the PL, but this was
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FIG. 3. rs dependence of the ground-state energy e of the
2DEG for the paramagnetic �z � 0� and ferromagnetic �z � 1�
fluid phases, and for the Wigner crystal as given in Ref. [5].
eM � 21.1061�rs is the Madelung energy.
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enough to alter the previous result and to predict a small
stability window for the FL [5]. Our backflow calculations
lower back the energy of the PL relative to the FL, with
the effect of shrinking, but apparently not eliminating, the
density range where the FL phase is stable: the ideal 2DEG
undergoes a polarization transition at rs � 26, and the
polarized liquid crystallizes at rs � 35.
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