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The low temperature phase diagram of 1D disordered quantum systems such as charge or spin density
waves, superfluids, and related systems is considered by a full finite-7 renormalization group approach
for the first time. At zero temperature the consideration of quantum phase slips leads to a new scenario
for the unpinning (delocalization) transition. In the strong pinning limit the model is solved exactly. At
finite T a rich crossover diagram with various scaling regions is found which reflects the zero temperature

quantum critical behavior.
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The collective behavior of condensed modulated struc-
tures such as charge or spin density waves (CDWs/SDW5s)
[1,2], flux line lattices [3,4], and Wigner crystals [2] in
random environments has been the subject of detailed in-
vestigations since the early 1970s. These are motivated by
the drastic influence of disorder: without pinning CDWs
would be ideal superconductors, whereas type-1I supercon-
ductors would show finite resistivity. In three-dimensional
systems the low temperature phase of these structures is de-
termined by a zero temperature disorder fixed point, result-
ing in quasi-long-range order and glassy dynamics [3,4].
In two dimensions this fixed point is extended to a fixed
line which terminates at the glass transition temperature
[5,6]. In the low temperature phase, correlations decay
slightly faster than a power law and the linear resistivity
vanishes (for a recent review, see [4]). In one dimension
the situation is different: the glass temperature is shifted
to T = 0. Nevertheless, there remains a residual trace of
disorder which is reflected in the low temperature behavior
of spatial correlations and in the dynamics [7].

Clearly, at low temperatures also quantum fluctuations
have to be taken into account. Disorder and quantum
fluctuations in 1D CDWs at zero temperature have been
considered previously (see, e.g., [8,9]) and an unpinning
transition as a function of the interaction strength was
found. Finite temperature effects were partially incorpo-
rated by truncating the renormalization group (RG) flow
at the de Broglie wavelength of the phason excitations [9].
However, for a complete study of the thermal to quan-
tum crossover, quantum and thermal fluctuations have to
be considered on an equal footing [10] which is the first
goal of this Letter. The second goal is the consideration
of quantum phase slips which trigger their own quantum
phase transition to a disordered phase and influence also
the unpinning transition. Experimentally, 1D behavior can
be seen in real materials, e.g., in whiskers [11], hairlike
single crystal fibers, with a transverse extension smaller
than the correlation length or in chainlike crystals with
weak interchain coupling. In the latter case there is a large
crossover length scale up to which 1D behavior can be ob-
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served [1,2]. The results obtained for the CDWs/SDWs
have a number of further applications on disordered quan-
tum systems: they relate, e.g., to the localization transi-
tion of Luttinger liquids [8,9], tunnel junction chains [12],
superfluids [13], Josephson coupled chains of these sys-
tems if the coupling is treated in mean-field theory [8],
and CDWs in a lattice potential. In most parts of this Let-
ter we use the terminology of CDWs.

Well below the mean-field (MF) condensation tempera-
ture Tyvr of the CDW, the electron density p(x) can be
written in the form [1]

p(x) = po(l + 07 '9,p) + prcos[ple + Qx)] + ...,
(1)

where Q = 2kp, kp is the Fermi momentum, pq is the
mean electron density, and p; is proportional to the ampli-
tude of the complex (mean-field) order parameter Ae’¢ ~
(bg + be>. by, by denote the phonon creation and
annihilation operators, respectively. ¢(x) is a slowly
varying phase variable, and p = 1 for CDWs and p = 2
for SDWs. Neglecting fluctuations in A, the Hamiltonian
of the CDW is given by

= 5 [(0) 7 o]
+ zU,»p(x)ﬁ(x - x)

+ Wcos<%fxdyﬁ(y)>}dx, )

where [P(x), $(x")] = gﬁ(x —x). ¢= %f denotes
the elastic constant, vy denotes the Fermi velocity, v
denotes the effective velocity of the phason excitations,
and f(T) denotes the condensate density [1]. Note that
f(T) and A(T) vanish at Tyr, whereas v remains finite.
The third term results from the effects of impurities with
random potential strength U; = *Ujpp and positions x;
and includes a forward and a backward scattering term
proportional to po and pj, respectively. We will assume
that the mean impurity distance [iy, is large compared
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with the wave length of the CDW and that the disorder
is weak; ie., 1 < limpQ <K ¢/(Uimpp1). In this case
the Fukuyama-Lee (FL) length Lg = [¢/(Up?)]*/?
is large compared to the impurity distance; here
U = Umpp1 /\/m The fourth term in (2) describes
the influence of quantum phase slips by ¢ = =g
and is discussed further below [13]. The model (2)
includes the four dimensionless parameters 1 = T/ Ac,
K = hv/me, u?> = U?/AN3mc?, and w = W/mcA?,
which measure the strength of the thermal, quantum,
and disorder fluctuations, and the probability of phase
slips, respectively. A = 7r/a is a momentum cutoff with
the lattice constant a. Although for CDWs and SDWs
K-values of the order 10! and 1, respectively, have been
discussed at T = 0 [14], the expressions relating K and

¢t to the microscopic theory lead to the conclusion that
both diverge by approaching Ty, whereas the ratio K /¢
remains finite. The classical region of the model is given
by K < t which can be rewritten as the condition that the
thermal de Broglie wavelength A7 = K/t A of the phason
excitations is small compared to a.

In order to determine the phase diagram we adopt a stan-
dard Wilson-type renormalization group calculation, which
starts from a path integral formulation of the partition func-
tion corresponding to the Hamiltonian (2) with u,w << 1.
We begin with the renormalization of the disorder term and
put w = 0 for the moment. The system is transformed into
a translationally invariant problem using the replica trick.
Going over to dimensionless spatial and imaginary time
variables, Ax — x and Avt — 7, the replicated action is

| given by [0 = (upoA/p10)*]

s 1

momentum shell of infinitesimal width 1/b < |g| = 1 but
arbitrary frequencies and rescaling x — x’ = x/b, 7 —
7/ = 7/b, we obtain the following renormalization group
flow equations (up to one loop):

dK 1 4 < 5 K> K
O = — — p*uPKBy| p*K, = | coth = 4
T o P uKBo| p7K, 5 coth—, 4)
du?® p’K K} 5 dt
& 13— 2 com— £y
dl [3 y oy T ®
y
Bi(v,y) =[ dr
0
fm dxgi(t,x)cosh(y — 7)(coshy)™!
o [1+ (%)z(cosh% - cos%)]”/4 ’
(6)
where [ =1Inb and go(7,x) = &(x)7°. Note that

Bo(p2K, %) — 0 for K — 0.

The equation for the flow of o is more involved and
is not discussed here, since it does not feed back into the
other flow equations. Indeed, we can get rid of the for-
ward scattering term by rewriting ¢(x) = &,(x) + @ (x)
with ¢/(x) = [y dy c(y), {c(x)) = 0, and {c(x)c(x")) =
Fo8(x — x'). The phase correlation function C(x,7) =
(¢ (x,7) = ¢(0,0)*) = Cp(x,7) + Cs(x) has therefore
always a contribution C(x) ~ |x|/&; with ffl ~o(l =
log|x]). Since all further remarks about phase correlations
refer to Cy(x, 7) we drop the subscript b.

There is no renormalization of ¢ (i.e., ¢) because of a
statistical tilt symmetry [15]. The special case t = 0
was previously considered in [9] (with p = \/5). The
flow equation for K obtained in [9] for w =71 =10
deviates slightly from (4), which can be traced back
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LA K/t 5 5 1
= 53 _ 0x@a)” + (0: 00 Oug — =5
27K azﬁfo dxfo dT{[( #a)” + (0r¢ )} £ 72K Jo

+ 00,0 (x,7)0, pp(x, T’)]} :
Integrating over the high momentum modes of ¢ (x,7) in a |

K/t
dr'[u* cosp(@a(x,7) — @p(x, ")

3

to the different RG procedures. The critical behavior
is, however, the same: there is a Kosterlitz-Thouless
(KT) transition [16] at K, between a disorder dominated,
pinned and a free, unpinned phase which terminates in the
fixed point K} = 6/p?. ug denotes the bare value of the
disorder and K, is given by u? = pKW(% - logﬁ—s)
with 9 = Bo(p?K:,). 1In the pinned phase the pa-
rameters K,u flow into the classical, strong disorder
region: K — 0,u — o, The correlation function
C(x,0) ~ |x|/&, increases linearly with |x|.  Inte-
gration of the flow equations gives for small initial
disorder and K < K, an effective correlation length
Eu~ AU (ALp)1~K/K)™" 3t which u becomes of the
order unity. Close to the transition line &, shows KT
behavior. For K = K,,, &, diverges and C(x,7) ~ K(I =
log|z|) log|z| where |z| = v/x2 + 72.  Note that K(I)
saturates on large scales at a value Kegr(ug).

For large values of u our flow equations break down,
but we can find the asymptotic behavior in this phase
by solving the initial model in its strong pinning limit
Uimp > 1,K = 0 exactly. A straightforward, but
somewhat clumsy, calculation yields for the pair corre-
lation function: C(x,7) = [2)—7;(1 — ﬁ)IQxI, where
a = 7/pQlimp. The connection to the weak pinning
model follows by choosing /iy = L.

At finite temperatures thermal fluctuations destroy the
quantum interference effects which lead to the pinning
of the CDW at r+ = 0. In the region K < K,,, u first
increases and then decreases under the flow. & can be
found approximately by integrating the flow equations
until the maximum of u(/) and #(/)/[1 + K([)]is of order
one. This can be done in full generality only numerically
(see Fig. 1). It is however possible to discuss several spe-
cial cases analytically. The zero temperature correlation
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FIG. 1. The low temperature crossover diagram of a one-

dimensional CDW. The amount of disorder corresponds to a
reduced temperature 7, = 0.1. In the classical and the quantum
disordered region, respectively, essentially the + = 0O behavior is
seen. The straight line separating them corresponds to Ay = a.
In the quantum critical region the correlation length is given by
Ar. Pinning (localization) occurs only for t = 0, K < K.

length can still be observed as long as it is smaller
than A7y which rewrites for K not too close to K as

t<tg = KtL(tI_K/KM) l, tw = (ALF)"'.  We call this
domain the quantum disordered region. For K = K, the
correlation length ¢ is given by Ay which is larger than
given by purely thermal fluctuations. For scales smaller
than A7, C(x, 7) still increases as ~ log|z| with a continu-
ously varying coefficient Kerr(ug). In this sense one ob-
serves quantum critical behavior in that region, despite the
fact that the correlation length is now finite for all values
of K [10]. In the classical disordered region tgy <t < t,
the correlation length is roughly given by Lgp as follows
from previous studies [6,7]. In the remaining region ¢, < ¢t
we adopt an alternative method by mapping the (classical)
one-dimensional problem onto the Burgers equation with
noise [17]. In this case the RG procedure applied to this
equation becomes trivial since there is only a contribution
from a single momentum shell and one finds for the corre-
lation length ¢! = ZA(T)t[1 + 27 /p)*(t./1)*]A. The
phase diagram depicted in Fig. 1 is the result of the numeri-
cal integration of our flow equations and shows indeed the
various crossovers discussed before.

So far the phase field has been considered to be single
valued. Taking into account also amplitude fluctuations of
the order parameter, the phase may change by multiples
of 271 by orbiting (in space and imaginary time) a zero
of the amplitude. Such vortices correspond to quantum
phase slips described by the last term in (2) (with ¢ = 2),
which we discuss here under equilibrium conditions. This
operator superposes two translations of ¢ by *q7 left
from x; i.e., it changes coherently the phase by =g in a
macroscopic region. For vanishing disorder the model can
be mapped on a sine-Gordon Hamiltonian for the 6 field
(with K replaced by K~ ') by using the canonical transfor-
mation P = —;8x9 and ——0,p = I1. To see the con-
nection to space-time vortices one rewrites the action of
interacting vortices as a classical 2D Coulomb gas which
is subsequently mapped to the sine-Gordon model [18].
The initial value wop of w is proportional to the fugacity
wo = e~ S/l of the space-time vortices which may be not
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negligible close to Tyig, where the action Score = f/(7K)
of the vortex core is small. Performing a calculation analo-
gous to the one above (but with # = 0) the RG flow equa-
tions read

dK 7 g¢*w? <q2 K> K

a = o e Bl )eony 7
dt 7 q*w? <q2 K> K}
a_l1- = B[ L. 2 )coth |r, (8
dl [ 2 k4 Wk 2r) %M ®)
dw _ [2 - q—zcothg} )
dl ak Mo ™

where Bj, are given in (6) with g; = 272 cosx and g =
(x2 + 72)cosx. From (7)—(9) we find that for t = u = 0
quantum phase slips become relevant (i.e., w grows) for
K > K, with K = ¢*/8 (¢ = 2 for CDWs). In this
region, vortices destroy the quasi-long-range order of the
CDW,; C(x,7) ~ |z|/&y. The transition is of KT type
with a correlation length &, [w(logé, ) = 1] diverging at
K,, + 0 [13]. At finite temperatures w first increases but
then decreases and flows into the region of large ¢ and
small w. Thus quantum phase slips become irrelevant at
finite temperatures. This can be understood as follows: at
finite ¢ the 1D quantum sine-Gordon model can be mapped
on the Coulomb gas on a torus of perimeter K/ since
periodic boundary conditions apply now in the 7 direction.
Whereas the entropy of two opposite charges increases for
separation L > K/t as log(LK /1), their action increases
linearly with L. Thus the charges remain bound. The one-
dimensional Coulomb gas has indeed only an insulating
phase [19].

It is now interesting to consider the combined influence
of disorder and phase slips. To this end we write an ap-
proximate expression for the action of a single vortex in a
region of linear extension L as

Svortex — Score _ 6]2 ) M(L)
h <4K 2 |logL X (10)
For very low K(<K,, K,,) where u(L) =~ uoL?/? the dis-
order always favors vortices on the scale of the effective
Fukuyama-Lee length &,. These vortices will be pinned in
space by disorder. On the other hand, for very large val-
ues of K(>K,, K, ) phase vortices are not influenced by
disorder since u(L) is renormalized to zero. In the remain-
ing region we have to distinguish the cases K, = K,,. For
K, < K <K, (ie., gp < 4/3) and uy = 0 the phase
correlations are lost on the scale of the KT correlation
length &,, of the vortex unbinding transition. Not too
close to this transition &, A = e(See/2MU=K./K)™ polds,
Switching on the disorder, # will be renormalized by strong
phase fluctuations which lead to an exponential decay of
u~ uoe_w“““‘/ §v such that disorder is irrelevant for the
vortex gas as long as &,, < £,. We expect that the rela-
tion &,, = ¢, determines the position of the phase bound-
ary between a pinned low K phase, where vortices are
favored by the disorder, and an unpinned high K phase,
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FIG. 2. T = 0 phase diagram for a CDW with quantum phase
slips. If gp < 4+/3 there is a single transition between a low
K pinned and a high K unpinned phase. In both phases the
correlation length is finite. If gp > 4+/3 these two phases are

separated by a third phase in which phase slips are suppressed
and C(x,7) ~ log|z|. Both transitions disappear at finite .

where vortices are induced by quantum fluctuations. This
line terminates in K,, for up — 0 (see Fig. 2). If Score
is large, &, will be large as well and &, = &, will be
reached only for K = K. For moderate values of Score,
the unpinning transition may be lowered considerably by
quantum phase slips. In the opposite case K, < K < K,
(.e., gp > 4/3) phase fluctuations renormalize weak dis-
order to zero such that vortices are still suppressed until
K reaches K,, where vortex unbinding occurs. In this case
two sharp phase transitions have to be expected.

Our flow equations describe also the effect of a
commensurate lattice potential on the CDW: if the wave-
length 77 /kr of the CDW modulation is commensurate
with the period a of the underlying lattice such that
7 /kr = n/(ga) with n,q integer, an Umklapp term
wcosq¢ appears in the Hamiltonian [1]. We obtain
the results in this case from (7)—(9) (and the conclu-
sions derived from them) if we use the replacements
K— K 't = t/K? and w — w/K?. Thus the lattice
potential is relevant for K < K,, with K = 8/4°.

Next we consider the application of the results ob-
tained so far to a one-dimensional Bose fluid. 1ts
density operator is given by Eq. (1) if we identify
Q/m=po=p1 (p=2). 9d,¢ is conjugate to the
phase 6 of the Bose field [20]. With the replacements
K—K', t—1t/K?> and w =0, (3) describes the
action of the 1D superfluid in a random potential. v
denotes the phase velocity of the sound waves with
v/mK = po/m and wvK = k/mw?pi, where Kk is
the compressibility. The transition between the su-
perfluid and the localized phase occurs for K = 2/3
[9]. Thermal fluctuations again suppress the disorder
and destroy the superfluid localization transition in 1D.
In contrast to CDWs here the 6 field may have vortex-
like singularities in space-time and the flow equations
(7)-(9) apply again. The vortex unbinding transition
appears at K, with K = 1/2,(q = 2). If both w
and u are nonzero we can use the canonical transfor-
mation to rewrite the vortex contribution in the form
wcos(qge). For K < K,, K,, both perturbations are irrele-
vant and the system is superfluid. For K,, < K < K|,
the decay of u is stopped due to the suppression of the
¢ fluctuations which in turn are due to w. An Imry-Ma
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argument shows furthermore that the go = w(n + 1/2)
state is destroyed on the scale & = &, /u’(logé) by
arbitrarily weak disorder, i.e., vortices become irrelevant
above this scale. On larger scales one can expect that
quantum fluctuations wash out the disorder, and the
system is still superfluid. Finally, at K > K,,K,, both
perturbations are relevant and superfluidity is destroyed.

To conclude we have shown that in 1D CDWs/SDWs
and superfluids disorder driven zero temperature phase
transitions are destroyed by thermal fluctuations leaving
behind a rich crossover behavior. Quantum phase slips in
CDWs and superfluids lead to additional phase transitions
and shift the unpinning transition in CDWs to smaller K
values. Coulomb hardening and dissipative quantum ef-
fects will be discussed in a forthcoming publication [21].
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