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To study material phenomena simultaneously at various length scales, descriptions in which matter
can be coarse grained to arbitrary levels are necessary. Attempts to do this in the static regime (i.e.,
zero temperature) have already been developed. We present an approach that leads to a dynamics for
such coarse grained models. This allows us to obtain temperature-dependent and transport properties.
Renormalization group theory is used to create new local potential models between nodes, within the
approximation of local thermodynamical equilibrium. Assuming that these potentials give an average
description of node dynamics, we calculate thermal and mechanical properties. If this method can be
sufficiently generalized it may form the basis of a multiscale molecular dynamics method with time and
spatial coarse graining.
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Predicting macroscopic properties of materials starting
from an atomistic or electronic level description can be
a formidable task due to the many orders of magnitude
in length and time scale that need to be spanned. A
characteristic of successful approaches to this problem is
the systematic coarse graining of less relevant degrees of
freedom in order to obtain Hamiltonians that span larger
length and time scales. For example, in first-principles
thermodynamics of crystalline solids, which is one of
the best developed examples of micro- to macrobridging,
electronic and vibrational excitations are integrated out in
order to obtain lattice-model Hamiltonians that describe
the substitutional degree of freedom [1]. Monte Carlo
simulations can then be used to simulate the kinetic
evolution of the system or to obtain its thermodynamic
state function. The reason first-principles thermody-
namics has been so well developed is that it deals with
extensive (averaged) quantities of homogeneous materials,
and minor inhomogeneities in real materials, such as
interfaces or dislocations, have a minor effect on the
thermodynamic functions. Another extreme is the study
of mechanical properties, such as plasticity, where the
property of interest (i.e., plastic yield) is determined by
discrete events (slip of dislocations), but over a very
large scale. This type of problems requires the use of
inhomogeneous coarse graining methods: atomistic-level
resolution may be required near the key features in the
material (e.g., dislocations or grain boundary) and lower
resolution is needed in between, in order to make the
problem computationally tractable. An important step
towards such a coupled multi-length scale description was
taken with the development of the quasicontinuum method
(QCM) in which the behavior of groups of atoms (nodes)
are treated with a finite element scheme [2]. The inter-
action between atoms is typically calculated with empiri-
cal potentials. In its original form QCM is essentially
a method that improves the boundary conditions on
atomistic regions and allows the boundary conditions of
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different atomistic regions to interact. Since QCM consists
of an optimization of the energy, no time or temperature
phenomena are present. Introducing temperature into
QCM can be done by using potentials that incorporate the
entropy due to lattice vibrations, for example, in a local
Einstein description [3,4]. This is conceptually similar
to the coarse graining of vibrations in first-principles
thermodynamics [5] and leads to structures that are
free-energy minimized. The study of time-/temperature-
dependent phenomena is more difficult and requires the
development of a dynamics for a system with an inho-
mogeneous level of coarse graining. To our knowledge,
no formal development of this problem exists for a
more general class of interactions, though methods that
couple molecular dynamics to continuum description have
been studied [6] and finite element dynamics has been
developed in the harmonic approximation without time
rescaling [7]. Other coarse graining techniques have been
developed: effective Langevin dynamics procedures have
been proposed to describe the relaxation of macroscopic
degrees of freedom [8], and transition state theories have
been generalized to boost time evolution, by modifying the
shape of the surface of constant energy (hyperdynamics)
[9] or using the Onsager-Machlup action [10]. None of
these methods has employed simultaneous space/time
coarse graining.

In this Letter we present a suggestion for the dynami-
cal modeling of 2D systems that exist simultaneously at
a different level of coarse graining in the time and space
domains. Coarse graining requires both a scheme to re-
move atoms and a prescription to define potentials between
the remaining atoms. For the approach advocated in this
Letter, atoms are integrated out through bond moving,
similar to the Migdal-Kadanoff approach in renormaliza-
tion group (RG) [11]. New potentials can be defined in
various ways, but important aspects are that the coarse
grained system ultimately evolves to the same equilib-
rium state of the fully atomistic one, and the information
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removed from the original system can be quantified, by
the entropy contribution of each coarse graining. Hence,
our criterion for defining new potentials when removing
atoms is that the partial partition function of the system
remains unchanged. We assess the validity of the model
by comparing the elastic, thermodynamic, and transport
properties of an inhomogeneously coarse grained and fully
atomistic model.

As a matter of introduction, the coarse graining is first
considered for a one-dimensional system. Let us con-
sider a finite one-dimensional chain of atoms with mass
m that interact through nearest neighbor pair potentials.
Each particle has kinetic and potential energy and the total
Hamiltonian is H��qi , pi��, where qi is the position coordi-
nate and pi is the momentum. It will be assumed that the
gradient of temperature along the chain is small enough
for local thermodynamic equilibrium to exist. One coarse
graining step is defined as removing every second atom.
The energy H�1��qi, qi12� between nearest neighbors of the
coarse system (second neighbors in the full atomic system)
is defined so as to conserve the partition function [the sub-
scripts �1� indicate the first step of renormalization]:

e2bH�1��qi ,qi12� �
1
h

Z Z
dqi11 dpi11

3 e2b�H�qi ,qi11�1H�qi11,qi12��.

Integrating the momenta leads to the reduced formula (in-
tegration at fix volume):

e2b�V�1��qi ,qi12,T�1F̃�1��T ,i11�� �
Z

dqi11

3 e2b�V �qi,qi11�1V �qi11,qi12��,

where F̃�1��T , i 1 1� is an excess free energy that does not
depend on the positions �qi , qi12�, in first approximation.
It contains the entropy of atom i 1 1 lost in the renor-
malization step (removed information). It is necessary to
keep track of this quantity to calculate properly the ex-
tensive thermodynamic quantities of the system. Finally,
from the last equation, it is possible to extract an effective
potential V�1��qi , qi12, T� which is temperature dependent,
generally.

It is not obvious that this choice for the coarse grain-
ing algorithm leads to the correct dynamics. However, it
is well known that the interaction so defined between par-
ticles i and i 1 2 is correct in the long time limit, i.e.,
when the motion of i 1 1 is much faster than i and i 1 2.
Hence low frequency dynamics in the coarse grained sys-
tem will likely be better represented than high frequencies.
However, we feel that the ultimate justification for this ap-
proach should be evaluated on the basis of a comparison of
properties of the coarse and fully atomistic system. This is
investigated in this Letter. Hence this potential generates
some dynamics of particles i and i 1 2 by the averaged
interaction of particle i 1 1. In a first approximation, we
consider F̃�1��T , i 1 1� to be independent from �qi , qi12�
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and the potential V�1� to contain all the possible spatial de-
pendencies of the remaining coordinates.

As is typical in dynamic renormalization group the-
ories, integrating out degrees of freedom, leads to a
time rescaling as t�1� � bzt, where b � 2 is our scaling
factor and z is the dynamical exponent [12]. This ex-
ponent does not affect equilibrium properties and will
be determined later. Coarse graining has to conserve
the total mass, so we take m

�1�
i � mi 1 mi11�2 and

m
�1�
i12 � mi12 1 mi11�2. To describe the potential we

take a simple expansion around the minimum a (a � 3 Å
atomistic lattice spacing and mi � 30 3 neutron mass),
V�qi , qi11� �

P
n kn�qi 2 qi11 2 ana�n. A symmetric

potential has an � 1, ;n. If we assume that the potential
V�1� has the same functional shape of V , we get recursive

relations V� j21�
RG
) V� j� (with V�0� � V ) which creates

higher order coarse grained potentials:

V� j��qi, qi1bj , T� �
X
n

k� j�nn�T�

3 �qi 2 qi1bj 2 bja�j�na�n.

In the simplified case of a harmonic potential V �qi ,
qi11� � k2�qi11 2 qi 2 a�2�2 it can easily be shown
that this renormalization of potential and mass pre-
serves the dispersion relation for phonons with small
momentum. The potential renormalizes to k�1�2 � k2�
2 (temperature independent). For a 1D chain v�kph� �p

k2�m j sin�akph�2�j so that v�1��kph� �
p

�k2�2���2m� 3

j sin�2akph�2�j, hence v�kph� 	 v�1��kph� for small kph.
Our model system interacts through a potential with

second and fourth powers k2 � 8.8 3 103 �K�Å2�,
k4 � 1.8 3 105 �K�Å4�, which is either symmetric
(a2 � a4 � 1) or nonsymmetric (a2 � 0.999, a4 �
1.0315), and we keep only the second and fourth power
coefficients k� j�2 , k� j�4, a� j�2, a� j�4 for every renormalized
potential. To extend the method to a 2D lattice, we use the
Migdal-Kadanoff moving bond (Fig. 1) approximation
[11], to remove atoms.

The model and assumptions are tested by comparing the
results of molecular dynamics simulations on the origi-
nal fully atomic system and the inhomogeneously coarse
grained system. Regions with different coarse graining

FIG. 1. Triangular lattice with bond moving approximation,
and an example of inhomogeneous coarse graining.
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are considered with different time evolution, because of
the dynamical exponent z in the time scaling. The method
is tested on elastic properties, thermodynamic quantities,
thermal expansion, and finally on its heat transport. We
see these as successfully more stringent tests to pass. A
2D triangular lattice with 225 3 31 atoms (6975 atoms)
and symmetric potential is studied in response to static
tensile/shear stress and under isotropic pressure deforma-
tion. The inhomogeneously coarse grained system is rep-
resented by 1510 nodes in an arrangement similar to that
in Fig. 1. We calculate the strain response to a normal-
ized tensile stress �s�

11 � s11�s0� along the longest di-
rection (s0 is the tensile stress which gives 5% of lattice
distortion). Various simulations are done at different nor-
malized temperatures �T� � T�T0 � 0.04 0.64, where
T0 � h̄v0�kB, v0 �

p
k2�m). Figure 2 shows the strain

response for T� � 0.32. The linear/nonlinear regions of
the strains are clearly conserved by the inhomogeneous
coarse graining. The elastic moduli of the two systems are
equal to within 4%. Similar results have been obtained for
shear strain (5%). For the bulk modulus calculations we
use the nonsymmetric potential, as described in the previ-
ous section. In the range of temperatures considered the
bulk moduli Bh for the original system (subscript h) and
Bih for the inhomogeneous coarse grained system (sub-
script ih) are equal to within 61%. The good agreement
for the elastic properties may not be surprising but indi-
cates that the bond folding does not modify the macro-
scopic energies. Since the elastic properties are largely a
reflection of the direct interaction and are not much influ-
enced by temperatures or atomic motion, they do not really
test the assumption made on the coarse grained dynamics.

We also evaluate the heat capacity for the 2D system
with nonsymmetric potential. The heat capacity from the
coarse system cannot be directly compared to the complete
system, but needs to be augmented with the contribution
from the entropy that is lost by removing degrees of free-
dom. This entropy can be calculated by keeping track of all
the free energies F̃� j��T , i� produced by the renormaliza-
tion integration and taking temperature derivatives to get

FIG. 2. Strain versus normalized stress s
�
11. The continuous

line represents the strain eh11 for the original system, while the
squares (�) represent the strain eih11 for the inhomogeneously
coarse grained system (T� � 0.32).
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entropies [13]. We find that within the range of simula-
tions T� � 0.1 1.6, CVih and CVh are equal to within the
numerical noise of 60.2%. Since the calculation is classi-
cal, the specific heats do not go to zero for T� ! 0.

The calculation of properties at constant pressure, such
as thermal expansion or Cp , requires a particular effort
to reproduce the correct dependence of free energy on
temperature and volume. This dependence is hidden in
either the nonlinear terms of the renormalized potentials
or the volume dependence of the integrated free energy
F̃� j��T , i�. An approximate representation of the thermal
expansion can be achieved by interpolation of a�j�2 , a�j�4

to conserve the thermalized bond length 
qi1bj 2 qi�� j� �

b
qj
i1�b21�j 2 qi�� j21� (the subscripts on the averages indi-

cate the potential used for the calculation). This constraint
can be satisfied with a very small shift (	1025 1024) of
the parameters a�j�2 , a� j�4. The overall effect is simply an
effective bias on the potential to match the correct thermal
expansion. Simulations with this method for the thermal
expansion coincide with the homogeneous and the inho-
mogeneous coarse grained systems, within the numerical
noise (65%). It is important to understand that, without
this correction, coarse grained systems have incorrect ther-
mal expansion (due to the removal of volume-dependent
entropy). Hence simulations with inhomogeneously coarse
grained regions would build up large internal strains upon
changing the temperature, a fact that does not seem to have
been recognized in previous formulations.

As stated in the description of the model, it is necessary
to calculate a dynamical property (such as the thermal con-
ductivity k) to get the value of the dynamical exponent z.
For finite systems, we can compare the results of a homo-
geneous lattice to those of an inhomogeneously renormal-
ized lattice, if we assume the effects of finite size to be the
same. To determine k, several simulations of a 2D homo-
geneous triangular lattice (Nx 3 Ny � 225 3 33) and its
homogeneously coarse grained equivalent are run at vari-
ous temperatures. A nonsymmetric potential, which allows
anharmonic phonon interactions, is used. Since there are
no interfaces in the homogeneously coarse grained lattice,
the only effect is due to the time scaling. The thermal

i
i

FIG. 3. Interface effect: thermal conductivity ratio kih�Nih
x ��

kh�Nh
x � versus the length of a 2D lattice with one interface. �1�

for T� � 1 and �±� for T� � 3.
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i

FIG. 4. Thermal conductivities kh�T���kh�T� � 1� �±� and
kih�T���kh�T� � 1� �1� of 2D lattices for various normalized
temperatures.

conductivity k is obtained from the standard Green-Kubo
relation [14]. This relation involves time integration, so the
dynamical exponent z can be implicitly obtained by fitting
k which is defined per “unit time.” We find that for a value
of z 	 1.45 6 0.1, perfect agreement exists for the k in
the atomistic and coarse system.

In order to study the thermal transport in inhomogeneous
systems the effect of interfaces between differently coarse
grained regions needs to be understood. We run simula-
tions for a 2D homogeneous lattice, with Nh � Nh

x 3 Nh
y

atoms, and for its inhomogeneous coarse grained version,
with Nih � Nih

x 3 Nih
y nodes. The inhomogeneous lattice

has one coarse graining interface at the center parallel to
the y direction. To one side of this interface everything is
fully atomistic, while to the other side one level of coarse
graining is applied. Thus Nih

x � 2Nh
x �3, and each region

is Nh
x �3 wide. By systematically varying the size of the

systems and plotting kih�Nih
x ��kh�Nh

x �, we determine the
effect of the interface/size in the thermal conductivity.

Figure 3 shows this effect at T� � 1 and 3: at high
Nh

x , the length of the regions becomes comparable to the
phonon mean-free path. Hence the fact that there are less
nodes in the coarse grained system becomes less apparent
and kih�Nih

x � ! kh�Nh
x �. The figure shows that, for our

potential, dynamical exponent z � 1.45, and temperatures
(T� � 1 and 3), regions wider than 500 nodes (Nh

x �3) give
acceptable results.

For high enough separation between interfaces, the
coarse grained dynamics reproduces the T dependence of
the thermal conductivity well. Figure 4 shows kih,h�T���
kh�T� � 1� for a 2D lattice with Nh � Nh

x 3 Nh
y �

11 264 3 33 � 371 712 atoms, and its inhomogeneous
coarse grained version with Nih � 63 072 nodes, and six
interfaces parallel to the y axis (each region is 512 nodes
wide at different levels of coarse graining). The inhomo-
geneous model underestimates the thermal conductivity
at low temperatures (T� , 1�3). At high temperatures
(T� . 1) the two results are within 10% � 15%. Normal
materials have T0 of the order of room temperature, so the
error is acceptable considering the strong approximations
in the method.
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To conclude, we have proposed and analyzed a molecu-
lar dynamics method with time and spatial coarse graining.
We show that mechanical and thermodynamical properties
are in excellent agreement with the noncoarse grained sys-
tem. If this method can be sufficiently generalized in 3D,
it may form the basis of a RG multiscale molecular dy-
namics to investigate effects of temperature and defects in
real nanostructures.
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