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Using precision measurements of tracer particle trajectories in a two-dimensional fluid flow produc-
ing chaotic mixing, we directly measure the time-dependent stretching field. This quantity, previously
available only numerically, attains local maxima along lines that coincide with the stable and unstable
manifolds of hyperbolic fixed points of Poincaré maps. Contours of a passive impurity field are found
at each instant to be oriented parallel to the lines that have recently experienced large stretching. The
local stretching varies by 12 orders of magnitude.
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The mixing of an impurity into a flowing fluid is an im-
portant process in many areas of science, including geo-
physical processes, chemical reactors, and microfluidic
devices. Even simple time-periodic flows in two dimen-
sions can produce chaotic mixing and complex distribu-
tions of material, in which nearby fluid elements diverge
strongly from each other [1]. The fundamental processes
involve a combination of repeated stretching and folding
of fluid elements in combination with diffusion at small
scales. In some cases, for example, periodic flows, the
concepts of nonlinear dynamics provide a deep theoretical
basis for understanding mixing [2–5]. However, the build-
ing blocks of this theory, i.e., the fixed points and invariant
manifolds of the associated Poincaré map, have remained
inaccessible to direct experimental study, thus limiting the
insight that could be obtained.

Computational studies have revealed the importance of
both statistical and geometric properties of stretching fields
in understanding chaotic mixing [6–11]. Several authors
have noted the way a passive scalar pattern is aligned
with calculated unstable manifolds of the flow [3,5,12,13].
Recent theoretical work has provided a solid connection
between maxima of the stretching field and invariant mani-
folds of the flow [14,15]. In a flow with an analyti-
cally known velocity field, computations of stretching were
compared with experimental dye visualization, and the dye
was found to have spread over regions that experienced
large stretching [12]. In this paper we show that experi-
mental measurements of sufficient accuracy can be used
to determine the stretching field for time-periodic flows,
thereby revealing the full time-dependent structure of the
stable and unstable manifolds of the flow.

To define stretching, consider an infinitesimal circular
fluid element. After time Dt, the flow has stretched it
into an ellipse, and the amount of stretching is defined
as the major diameter divided by its initial diameter. To
measure the stretching, we first determine the flow map
�x0 � �F��x, t0, Dt�, a function that specifies the destination
vector �x0 at time t0 1 Dt of any fluid particle starting from
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�x at time t0. (For Dt equal to one period, �F becomes the
Poincaré map of the flow.) The stretching experienced
by a fluid element is determined by the gradients of the
flow map. In particular, the stretching is the square root
of the largest eigenvalue of the right Cauchy-Green strain
tensor, Cij , at that location: Cij � �≠Fk�≠xi� �≠Fk�≠xj�,
where summation is implied over the repeated index k �
1, 2. Note that the largest finite-time Lyapunov expo-
nent, l, is given by the logarithm of the stretching after
division by Dt.

There are two distinct ways to display the spatial dis-
tributions of measured stretching. Labeling each point by
the stretching that fluid element will experience in the next
Dt produces what we call the future stretching field. The
stretching each point experienced in the previous Dt is the
past stretching field.

Our work depends on high resolution measurements of
particle displacements in a two dimensional time-periodic
flow described later. Approximately 800 fluorescent la-
tex particles (120 mm in diameter) are suspended in the
flow and followed by recording up to 15 000 images (each
512 3 512 pixels) at 10 Hz in a typical run, or 40–180
images per period. The centroid of each of the 12 000 000
particles in the sequence of images is found to a precision
of about 40 mm (0.2 pixels). Particles found in sequential
images are then combined into tracks. Since the flow is
time periodic, we use conditional sampling, grouping to-
gether particle positions in all images at the same phase
relative to the forcing. This process yields 100 000 precise
particle positions at each phase, velocities accurate to a few
percent, spatial resolution of 0.003 of the field of view, and
time resolution of about 0.01 periods of the flow.

To extract the flow map and its gradients, we first mea-
sure particle velocities from trajectories using polynomial
fitting. The velocities are then interpolated onto a grid
to obtain the velocity as a function of space and phase.
Numerical integration of hypothetical particle trajectories
from these velocity fields produces flow maps with ex-
tremely high resolution. (We have also used actual particle
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trajectories to determine the flow map, and while this pro-
duces similar results, it is less accurate.)

The two-dimensional flow is produced by density
stratification and time-periodic magnetic forcing [16]. A
sinusoidal (horizontal) electric current through a thin
conducting fluid layer placed above an array of permanent
magnets generates a flow by means of Lorenz forces.
The fluid of interest is a 1 mm thick nonconducting
upper layer floating on the lower driven layer. The fluids
are glycerol-water mixtures, with the lower layer also
containing salt. Though miscible, the two layers remain
distinct over the course of an experiment, and the flow
stays essentially two dimensional. The resulting flow is
a time-periodic vortex array, spatially disordered in the
work described here. The flow is 15 3 15 cm, and all the
figures in this paper show a central 10 3 10 cm region.
Typical forcing frequencies are 10–200 mHz, and typical
velocities are 0.05–1 cm�s. In some experiments, half of
the upper layer is initially marked with fluorescein dye,
whose emission in the visible under UV illumination is
accurately proportional to the local concentration.

The general behavior of this system has been described
elsewhere [16]. After an initial transient, the concentra-
tion field reaches a nearly steady state in which stretching
and folding balance diffusion in such a way that the pat-
tern recurs once per cycle of the forcing (despite the strong
variation during the cycle), except for a slow overall ex-
ponential decay of contrast. This striking process may be
viewed in the animation available on-line [17].

There are two important control parameters. The
Reynolds number Re � UL�n (based on the mean mag-
net spacing L � 2 cm, rms velocity U, and kinematic
viscosity n) is typically between 10 and 200. The second
parameter is the mean path length p � UT�L in one
forcing period T , which is typically in the range 0.5 to 10.
Chaotic mixing is weak at the lower end of the ranges of
Re and p, where the unmixed elliptic regions are large,
and mixing grows stronger as Re and p are increased.
Both parameters are controlled experimentally by the
forcing current, its frequency, and the fluid viscosity.
The flow becomes nonperiodic or weakly turbulent in the
range Re � 100 150, depending on p.

Figure 1 shows examples of one component of the veloc-
ity field for a run at Re � 45 and p � 1. Both components
are available as a function of time, and an animation may
be viewed on-line [17]. The two fields shown in Fig. 1 are
taken at equal time increments before and after the mini-
mum of the magnitude of the velocity field. Because one
is not the negative of the other (due to the nonzero Re),
particles do not generally retrace their paths and chaotic
mixing occurs, despite the periodicity of the flow and the
time reversal symmetry of the forcing.

Studying mixing requires following fluid elements over
extended times. Figure 2 shows the particle displacements
over one period, i.e., a Poincaré map. In these maps, lines
are drawn from the measured initial to final particle posi-
tions, and pseudocolor is used to show the large and small
254501-2
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FIG. 1 (color). Maps of one component of the velocity field in
the 2D flow measured at two instants equidistant from the instant
of minimum flow �p � 1, Re � 45�. The fact that one image
is not the negative of the other is an example of the breaking of
time reversal symmetry required for chaotic mixing.

displacements. Points at which there is no net motion over
a full period are fixed points. Figure 2(b) shows a 43 en-
largement of part of the Poincaré map. The fixed points
in this map have been marked; both elliptic and hyper-
bolic fixed points may be seen. The latter have one axis
of approach (stable manifolds) and one axis of departure
(unstable manifolds).

Figure 3(a) shows the past stretching field for this flow.
It reveals many sharp maxima which are organized into
lines, with much smaller stretching values between them.
Determination of the stretching field requires the selection
of a time interval Dt for the map; here it is three periods.
Smaller (or larger) values result in broader (or sharper)
structures. An animation showing how the past stretching
field depends on Dt is available on-line [17].

The dye concentration field is shown at the same phase
in Fig. 3(b). In Fig. 3(c), we superimpose the past stretch-
ing field on the dye image. The dye visualization and par-
ticle tracking data are measured in separate experiments at
the same parameters. We observe that the level sets (con-
tour lines) of the concentration field line up with the lines

FIG. 2 (color). Poincaré map of the flow at one phase of the
forcing �p � 1, Re � 45�. Lines connect the experimentally
measured initial coordinates of each particle with its coordi-
nates one period later, with blue and red designating small and
large displacements, respectively. (a) Complete field of view.
(b) Close-up of the region in the box in (a), showing two ellip-
tic fixed points (circles), four hyperbolic fixed points (crosses),
and the trajectories near them.
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FIG. 3 (color). (a) Field showing the stretching experienced during the past three periods at Re � 45, and p � 1. This is the same
flow at the same phase as Fig. 2. (b) Corresponding dye image showing the concentration after 30 periods but at the same phase as
in (a). (c) Superposition of (a) and (b); the contour lines of the concentration field are aligned with the lines of large past stretching.
(d) Superposition of the past stretching field with a dye image at a higher Re � 100 and p � 5.
of strong past stretching. Furthermore, we find this to be
the case at each instant or phase [17].

Now we discuss the correspondence between the lines
of the stretching fields and the fixed points of the Poincaré
map. In Fig. 4, we show the future stretching field (blue)
in addition to the past stretching field (red). Many of the
points where the two sets of lines cross correspond to
hyperbolic fixed points of the Poincaré map (Fig. 2b). The
lines of the future and past stretching fields label the stable
and unstable manifolds of these fixed points [15]. Qual-
itatively, this is because particles along these manifolds

FIG. 4 (color). Lines of the future (blue) and past (red) stretch-
ing field. The lines mark the stable (blue) and unstable (red)
manifolds of the hyperbolic fixed points of the Poincaré map.
Black circles indicate some of the hyperbolic fixed points. Con-
ditions match Figs. 2 and 3(a)–3(c), and the box outlines the
region shown in Fig. 2(b). Some of the fixed points are associ-
ated with weak stretching lines. Viewing the time dependence
of the manifolds [17] allows greater insight into the dynamics
of the mixing process.
254501-3
come very close to a fixed point, and hence experience
stretching in the same direction over extended times.
Thus, we have the following correspondence between the
various objects: large future stretching marks the stable
manifolds; large past stretching marks the unstable mani-
folds. This demonstrated ability to measure the locations
of both the stable and unstable manifolds as a function of
time in complicated experimental flows allows the insights
of lobe dynamics [3,4] to be applied to practical mixing
flows. An animation [17] shows the time dependence of
the superimposed past and future stretching fields, which
form homoclinic and heteroclinic tangles of invariant
manifolds. Careful study of this animation makes it
possible to distinguish between crossings which mark
fixed points and those which do not, since only the former
return to their initial location one period later.

We have also carried out this analysis at higher values
of Re and p, as shown in Fig. 3(d). Here the fixed points
themselves are harder to determine, because much larger
stretching is occurring. No regular islands are observed.
However, the concentration field is still organized by the
invariant manifolds, with contours of constant concentra-
tion aligning with the lines of large past stretching. This is
particularly dramatic in a time-dependent animation [17].

As Re is increased, the flow passes through a sequence
of period doubling bifurcations. At Re � 115, p � 5,
where Re is only slightly higher than in Fig. 3(d), the
velocity field repeats only every second forcing period.
At Re � 125, p � 5 we find a period-4 velocity field.
Despite the bifurcations in the velocity field, the stretching
fields measured in the period-2 flow still form sharp lines
and the past stretching lines continue to align with the dye
pattern at each instant. Although our measurements cannot
at present be performed in nonperiodic flows, we note that
manifolds that organize the mixing process can be defined
and numerically observed even in nonperiodic finite-time
flows [14]. This fact suggests that the role the stretching
field plays in mixing should be independent of periodicity.

The probability distribution of stretching shown in
Fig. 5 displays the wide range of stretching in the flow.
254501-3
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FIG. 5. Probability distribution of stretching for Dt � 1 period
at Re � 100 and p � 5. (Inset) Probability distributions of
the finite-time Lyapunov exponents, l. Solid line, Re � 45,
p � 1, �l� � 1.91 periods21; dashed line, Re � 100, p � 5,
�l� � 6.37 periods21.

The log-log plot (at Re � 100, p � 5) spans more than
12 orders of magnitude in stretching after only one period.
The inset of Fig. 6 shows the distributions of finite time
Lyapunov exponents for both the Re � 45 and Re � 100
data. They have been divided by their means, so that the
shapes of the distributions can be compared; they depend
slightly on Re.

A possible future research direction would be to develop
predictions of mixing rates from measured stretching dis-
tributions. Theories have been proposed for this purpose
[18,19], and have been tested numerically. However, it is
uncertain how to apply them to flows like ours that contain
regular regions near no-slip boundaries, or whose velocity
correlation length is much smaller than the flow domain
(due here to the large number of magnets). These issues
are treated in a companion paper [20].

We have shown that lines of large stretching correspond-
ing to invariant manifolds of experimental flows can be
determined from precise measurements of particle trajec-
tories. These special material lines, which emerge from
hyperbolic fixed points of the flow map, organize the evo-
lution of inhomogeneous impurities in the flow. We find
that the dye contour lines and the lines of maximal past
stretching are locally parallel. This is true at each instant
in the time-dependent flow, and continues to be the case at
higher Reynolds number and even after the velocity field
bifurcates. The ability to measure and visualize the time
resolved stretching fields gives powerful insight into the
geometrical structure that underlies mixing.
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