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Spontaneous Breaking of Rotational Symmetry in Superconductors
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We show that homogeneous superconductors with broken spin/isospin symmetry lower their energy via
a transition to a novel superconducting state where the Fermi surfaces are deformed to a quasiellipsoidal
form at zero total momentum of Cooper pairs. In this state, the gain in the condensation energy of the
pairs dominates over the loss in the kinetic energy caused by the lowest order (quadrupole) deformation of
Fermi surfaces from the spherically symmetric form. The phase transition from the spherically symmetric
state to the superconducting state with broken rotational symmetry is first order.
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In the original Bardeen-Cooper-Schrieffer (BCS) the-
ory of bulk superconductivity, the condensate wave func-
tion describes a quantum coherent state which is invariant
under spatial and time (particle-hole) reversal transforma-
tions [1]. External perturbations which act on discrete
quantum variables, like the spin of the fermions, break the
particle-hole symmetry. A typical example is a metallic
superconductor in a high magnetic field where the Pauli
paramagnetism induces an asymmetry in the populations
of the spin-up and spin-down electrons. The supercon-
ducting state is quenched via a first order phase transition
once the splitting in the energy spectrum of spin-up and
spin-down electrons becomes of the order of the pairing
gap in the unpolarized state [2]. The crossover from the
BCS to the normal state can be understood in terms of the
phase-space overlap between the fermionic states located
at the top of their individual Fermi surfaces. The pairing
gap is maximal for the symmetric (unpolarized) state with
perfectly overlapping Fermi surfaces. As these are driven
apart by the “polarizing field,” the phase space available
for the pairing decreases and the gap is successively sup-
pressed. At finite temperatures the smearing of the Fermi
surfaces increases the phase-space overlap and hence the
critical field at which the superconductivity is quenched.

The superconducting state sustains larger asymmetries
if the translational symmetry is broken. Larkin and
Ovchinnikov and Fulde and Ferrell (LOFF) argued that
the crossover from the BCS to the normal state, as the
Fermi surfaces are driven apart by the polarizing field, oc-
curs via a spatially inhomogeneous superconducting phase
[3,4]. The Cooper pairs carry a finite total momentum in
the LOFF phase, i.e., the centers of the Fermi spheres are
shifted allowing for a partial phase-space overlap.

This paper suggests an alternative mechanism of break-
ing the symmetry which is based on a deformation of the
spherical Fermi surfaces, to the lowest order, into quasi-
ellipsoidal form. If the total momentum of the Cooper
pairs is zero, as we shall assume in the following, the de-
formation spontaneously breaks the rotational symmetry.
The novel superconducting phase maintains its stability
due to the dominance of the condensation energy of the
Cooper pairs over the loss in the kinetic energy of the sys-
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tem caused by the deformation of the Fermi surfaces. We
shall assume that there is a single axis along which the
symmetry is broken, although more complicated patterns
of symmetry breaking are possible (simultaneous breaking
of the rotational and translational symmetries, higher order
multipole deformations of Fermi surfaces, etc.). Note that
deformed or nonspherical Fermi surfaces are common for
electrons in solids; here we treat systems which are homo-
geneous in the normal state; i.e., any deformations of the
spherical shape of the Fermi surfaces would correspond to
an unstable state.

We start with the BCS-Gorkov equations in energy-
momentum representationX
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where Ggb�v, p� and Fgb�v, p� refer to the full normal
and anomalous retarded propagators, Dag�v, p� is the
anomalous self-energy, and the diagonal matrix elements
of the first matrix correspond to the inverse of free-single
particle propagators; the Greek indices a, b, . . . � 1, 2
label the two different species, and v and p refer to the
particle energy and momentum. (Note that the center-of-
mass momentum of particles is zero.) Suppose that the ro-
tational symmetry is broken by a deformation of the Fermi
surfaces from spherical form. The quasiparticle spectrum
of species a can be parametrized, then, as

Ea �
p2

2ma

2 ma�1 2 ea cos2u� , (2)

where ma are the chemical potentials of the particles in
the undeformed state, and u is the angle between the par-
ticle momentum p and the axis of symmetry breaking; the
deformation of the Fermi sphere in Eq. (2) is truncated
at the lowest order nontrivial axisymmetric deformation,
which is described by the l � 2 term of the expansion in
Legendre polynomials Pl�cosu�. Note that the spectrum
(2) is diagonal in the Greek indices when the renormal-
ization is carried out in the effective mass approximation.
The constant energy surfaces of quasiparticle excitations
defined by Eq. (2) represent quasiellipsoids of revolution
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with an ellipticity ea . For ea � 0 the spectrum (2) is the
true eigenstate of the unpaired, homogeneous system in the
absence of external fields. [Note that the deformation de-
scribed by Eq. (2) does not need to conserve the volume of
the Fermi sphere, as we impose a self-consistency condi-
tion for the total density of the system; see Eq. (9) below.]

In the following we shall neglect the possible pairing
among the same species (Daa � 0) so that only the off-
diagonal elements of the anomalous self-energy matrix are
nonzero. The quasiparticle excitation spectrum in the su-
perconducting phase is determined in the standard fashion
by finding the poles of the propagators in Eq. (1):

v1,2 � EA 6
p

E2
S 1 jDj2 , (3)

where the symmetric and antisymmetric parts of the spec-
trum (which are even and odd with respect to the time-
reversal symmetry) are defined as ES,A � �E1 6 E2��2.
The solution of Eq. (1) can be written in terms of the eigen-
states (3) as
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where the Bogolyubov amplitudes are
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The mean-field approximation to the anomalous self-
energy yields the gap equation

D�p� � 2
Z dv0 dp0

�2p�4 V �p, p0� ImF�v0,p0�f�v0� , (7)

where V �p, p0� is the bare interaction, f�v� �
�exp�bv� 1 1�21 is the Fermi distribution function, and b

is the inverse temperature. (For the sake of simplicity we
ignore the renormalization of the pairing interaction in the
particle-hole channel and assume a time-local interaction.)
The v integration is straightforward in the quasiparticle
approximation, since the frequency dependence of the
propagator is constrained by the on-shell condition. For
S-wave interactions the potential depends only on the
absolute magnitude of the quasiparticle momenta. In this
case the gap equation simplifies to

D�p� �
Z p02 dp0

�2p�2
V �p, p0�

3
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d cosu0 D�p0�
2
p

E2
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3 � f�v1� 2 f�v2�� . (8)

Note that the deformation of the Fermi surfaces enters the
gap equation as a parameter which is determined by the
252503-2
minimum of the ground state energy of the superconduct-
ing phase. For strongly coupled superconductors the gap
equation (8) is supplemented by the normalization condi-
tion for the net density r � r1 1 r2 at a constant tem-
perature. The densities of the species are given by

r1,2 � 22
X Z d4p

�2p�4
ImG1,2�v, p�f�v�

�
X Z d3p

�2p�3 �u2
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pf�v2,1�� , (9)

where the summation is over the discrete quantum vari-
ables. The second equality follows in the quasiparticle
approximation.

Next we turn to the thermodynamic properties of the
superconducting state. At a fixed density and temperature
the relevant thermodynamic potential is the free energy

Fjr,b � U 2 b21S , (10)

where U is the internal energy and S is the entropy. In
the mean-field approximation the entropy is given by the
expression

S � 2kB
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where f̄�v6� � �1 2 f�v6��, and kB is the Boltzmann
constant. The internal energy, defined as the grand canoni-
cal statistical average of the Hamiltonian, is

U �
X Z d3p

�2p�3

Ω
�n1�p�E1�p� 1 n2�p�E2�p��

1
Z d3p0

�2p�3 V�p, p0�n�p�n�p0�
æ

,

(12)

where

n1,2�p� � u2
pf�v1,2� 1 y2

pf�v2,1� , (13)

n�p� � upyp� f�v1� 2 f�v2�� . (14)

The first term in Eq. (12) is the kinetic energy while the
second term includes the mean-field interaction among the
particles in the condensate. The true ground state of
the system minimizes the free energy difference dFjr,b
between the superconducting and normal states [the free
energy in the normal state follows from Eqs. (11) and (12)
when D � 0].

The deformations of the Fermi spheres can be described
in terms of the “conformal deformation” e � �e1 1 e2��2
and the “relative deformation” de � �e1 2 e2��2. Then,
the symmetric and antisymmetric parts of the energy spec-
trum can be written as
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EA � 2dm 1 �mde 1 edm�cos2u , (16)

where m � �m1 1 m2��2, dm � �m1 2 m2��2 (here we
ignore the difference in the masses of the spin/isospin up
and down quasiparticles). Equations (8), (9), and (10)
form a closed system, which determines the pairing gap
and the ground state energy of a superconductor for con-
stant density asymmetry a � �r1 2 r2���r1 1 r2�. The
values of the deformation parameters de and e are ob-
tained by requiring that the free energy attains its mini-
mum. Note that in the weak coupling limit Eqs. (8) and
(9) decouple, and one may solve for D as a function of dm

instead of a. Apart from the fact that a, rather than dm,
is the measurable quantity, there is an additional reason for
solving the full set of equations. The gap equation alone
is symmetric under exchange EA ! 2EA, which implies
that the solutions are symmetric under the simultaneous
change of the signs of dm and de. Equation (9), however,
does not have this symmetry, and the solutions are distinct
under the sign transformation above.

As a specific example, which illustrates the solutions
above, we consider isospin-singlet (neutron-proton) pair-
ing in nuclear matter in the 3S1-3D1 channel [5–8]. The
gap in the isospin symmetric case is D00 � 12 MeV if we
use as the bare interaction the Argonne potential and ig-
nore the renormalization of the mass of the particles in the
normal state due to interactions. The modification of the
particle self-energy in nuclear medium (for a review see
[9]) affects the absolute magnitude of the gap and rescales
its dependence on the parameters. Clearly, with these ap-
proximations, our model is schematic; however, we do not
expect qualitative changes when renormalization of the in-
teraction and the bare mass are included.

The BCS solutions for the n-p pairing have been studied
for the homogeneous (translationally and rotationally) in-
variant state under isospin asymmetric conditions [10–13]
and the inhomogeneous state with broken translational
symmetry [14,15] (the nuclear analog of the LOFF phase).
(The flavor asymmetric 	qq
 condensate in high density
QCD is another example of strongly coupled supercon-
ductor where the breaking of translational symmetry plays
a role [16].) Consistent with the assumption Daa � 0
above we ignore the n-p pairing in the 1S0 channel (see
Ref. [17]).

Figure 1 shows the pairing gap as a function of the den-
sity asymmetry and the relative deformation de for van-
ishing conformal deformation (e � 0). Here and below
we assume a density r � 0.16 fm23 and a temperature
T � 3 MeV. The gap is normalized to its value D00 in
the isospin symmetric rotationally/translationally invariant
state. Although a changes in the interval �21; 1� in gen-
eral, the symmetry of the equations with respect to the in-
dices labeling the species reduces the range of a to �0; 1�.
Assuming neutron excess implies that the Greek indices
equal to 1 refer to neutrons, while those equal to 2 re-
fer to protons. The relative deformation obviously is not
bounded and can assume both positive and negative values.
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FIG. 1. The pairing gap as a function of the density asymmetry
a and the relative deformation de. The gap is normalized to its
value for da � 0 � de.

For positive values of de, which imply an oblate de-
formation for the Fermi surface of neutrons and a prolate
deformation for the Fermi surface of protons, the solutions
for the gap equation show the following features. For ar-
bitrary constant de the gap is maximal at a � 0 and is
suppressed as the asymmetry is increased. For constant a,
≠D�≠de � 0 corresponds to a maximum at de fi 0 in the
large a limit. The position of the maximum is indepen-
dent of a and is located around de � 0.5 in our model;
this value also corresponds to the critical asymmetry ac

at which the superconducting state vanishes. Note that for
a around ac the gap exists only in the deformed state.
For a � 0, Eqs. (8)–(10) are symmetric under exchange
of the sign of deformation and so is the gap function. In
particular, for a � 0, the critical deformation for positive
and negative deformations coincide. For finite a the de-
pendence of the gap on the relative deformation depends
on the sign of de. In contrast to the positive range of de,
where the maximum value of the gap is attained at constant
de, for negative de the maximum increases as a function
of the deformation and saturates around de � 1. Quite
generally, to maintain the maximal phase space overlap,
the system prefers to keep the sign of dm opposite to that
of de. Figure 2 shows a two-dimensional projection of a
configuration of deformed Fermi surfaces for de � 0.64
which minimizes the free energy for fixed a � 0.35.

The difference in the free energies of the superconduct-
ing and normal states dF is shown in Fig. 3. Owing to the
symmetries of the underlying equations, dF is symmetric
with respect to the sign change of de when a � 0. For
finite a’s, a minor departure from the rotational invariant
state leads to a decrease in dF which develops two minima
for either sign of de. This behavior can be traced back to
the increase of the potential energy with increasing gap
(cf. Fig. 1). Note that, although there are nontrivial solu-
tions to the gap equation in the large a limit for de ! 21,
these solutions do not lower the energy of the system. The
superconducting phase becomes unstable for a . 0.4 due
to the increase in the kinetic energy caused by the large
252503-3
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FIG. 2. A projection of the Fermi surfaces on a plane parallel
to the axis (z) of the symmetry breaking. The concentric circles
correspond to the two populations of spin/isospin-up and -down
fermions in spherically symmetric state (de � 0), while the de-
formed figures correspond to the state with relative deformation
de � 0.64. The density asymmetry is a � 0.35.

deformation of the Fermi surfaces, so that dF is a nearly
even function of de.

An inspection of the latent heat associated with the
phase transition at finite temperatures shows that this quan-
tity does not vanish at the crossover from the spherically
symmetric to the deformed superconducting state. Conse-
quently, the phase transition associated with the breaking
of the rotational symmetry is first order.

To summarize, this paper suggests a novel mechanism
of symmetry breaking in a superconducting system with
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FIG. 3. The difference in the free energies of the supercon-
ducting and normal states dF as a function of the density asym-
metry a and the relative deformation de. The free energy is
normalized to its value for da � de � 0.
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particle-hole asymmetry. The lowest order (quadrupole)
deformation of the Fermi surfaces (at zero total momentum
of the Cooper pairs) increases the phase-space overlap be-
tween the Fermi surfaces of paired quasiparticles, which is
otherwise depleted by the asymmetry in the particle/hole
populations. As a result, the free energy develops minima
for finite deformations, since the gain in the (negative) pair-
ing potential energy dominates the increase in the kinetic
energy caused by the deformation. Since the deformed
ground state spontaneously breaks the rotational symme-
try, the dynamic properties of the superconducting state
with deformed Fermi surfaces such as the sound attenua-
tion, the infrared absorption, or the Meissner effect will be
anisotropic. The results above do not depend on the nature
of fields inducing the asymmetry in the fermion popula-
tions nor on the nature of the pairing forces and should be
applicable to a wide range of fermionic systems.
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