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We show that, contrary to previous string models, the high-temperature behavior of the recently pro-
posed confining strings reproduces exactly the correct large-N QCD result, a necessary condition for
any string model of confinement.
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Although fundamental strings [1] can be quantized only
in critical dimensions, strings in four space-time dimen-
sions are of great interest since there is a large body of
evidence [2], recently confirmed by numerical tests [3],
that they can describe the confining phase of non-Abelian
gauge theories. However, a consistent quantum theory de-
scribing these strings has not yet been found: the simplest
model, the Nambu-Goto string, can be quantized only in
space-time dimension D � 26 or D # 1 because of the
conformal anomaly; it is inappropriate to describe the ex-
pected smooth strings dual to QCD [4], since large Eu-
clidean world sheets are crumpled. In the rigid string [5],
the marginal term proportional to the square of the ex-
trinsic curvature, introduced to cure this problem, turns
out to be infrared irrelevant and, thus, unable to prevent
crumpling.

Both these models also fail to describe the correct high-
temperature behavior of large-N QCD [6]. As shown
in [7], the deconfining transition in QCD is due to the
condensation of Wilson lines, and the partition function
of QCD flux tubes can be continued above the decon-
fining transition; this high-temperature continuation can
be evaluated perturbatively. So, any string theory that is
equivalent to QCD must reproduce this behavior. How-
ever, the Nambu-Goto action has the wrong temperature
dependence, while the rigid string has the correct high-
temperature behavior but with a wrong sign and an imagi-
nary part signaling a world-sheet instability [6].

Recently, two new models have been proposed: the first
one, the confining string [8], is based on an induced string
action explicitly derivable for compact QED [9] and for
Abelian-projected SU(2) [10]; a second one, originally
proposed in [11], is based on a five-dimensional, curved
space-time string action with the quarks living on a four-
dimensional horizon [12]. The formulation of the string
theory in the five-dimensional curved space-time is closely
related to the AdS/CFT (anti–de Sitter/conformal field
theory) correspondence [13]. In fact, with a special choice
of the metric in the curved space one recovers the AdS5

space, thereby providing a string theory description of a
conformal gauge theory [13]. Although very interesting
results on gauge/strings duality have been obtained in this
framework [2,13], even at finite temperature [14], this cor-
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respondence is not directly relevant to the problem of con-
finement unless the conformal symmetry of the gauge the-
ory is broken.

The confining string action possesses, in its world-sheet
formulation, a nonlocal action with a negative stiffness
[9,15] that can be expressed as a derivative expansion of the
interaction between surface elements. To perform an ana-
lytic analysis of the geometric properties of these strings,
this expansion must be truncated: this clearly makes the
model nonunitary, but in a spurious way. Moreover, since
the stiffness is negative, a stable truncation must, at least,
include a sixth-order term in the derivatives [16]. In
[16,17] it was shown that, in the large-D approximation,
this model has an infrared fixed point at zero stiffness,
corresponding to a tensionless smooth string whose world
sheet has Hausdorff dimension 2, exactly the desired prop-
erties to describe QCD flux tubes. As first noticed in [18],
the long-range orientational order in this model is due to
an antiferromagnetic interaction between normals to the
surface, a mechanism confirmed by numerical simulations
[19]. Moreover, it was shown in [17] that this infrared fixed
point does not depend on the truncation and is present for
all ghost- and tachyon-free truncations and that the effec-
tive theory describing the infrared behavior is a conformal
field theory with central charge c � 1.

In this Letter we study the high-temperature behavior of
the string model defined in [16]. We show that this model
has a high-temperature behavior that agrees in temperature
dependence, sign, and reality properties with the large-N
QCD result [6]. This result depends entirely on the higher
order term and is totally independent of the stiffness.
Finite-temperature confining strings in (2+1) dimensions
and in the presence of D0 branes have been studied
in [20].

In Euclidean space, the action proposed in [16] is

S �
Z

d2j
p

g gabDaxm

µ
t 2 sD 2 1

1
M2 D 4

∂
Dbxm ,

(1)

where Da are covariant derivatives with respect to the in-
duced metric gab � ≠axm≠bxm on the surface x�j0,j1�.
The first term in the bracket provides a bare surface ten-
sion 2t, while the second accounts for the rigidity, with
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a stiffness parameter s that we set to its fixed-point value
s � 0. In the third term, M is a new mass scale. Since
this term contains the square of the gradient of the extrinsic
curvature matrices, it suppresses the formation of spikes on
the world sheet. In the large-D approximation it generates
a string tension proportional to M2, which takes control
of the fluctuations where the orientational correlation dies
off. To perform the large-D analysis we introduce a La-
grange multiplier [21] lab that forces the induced metric
≠axm≠bxm to be equal to the intrinsic metric gab , extend-
ing the action (1) to

S ! S 1
Z

d2j
p

g �lab�≠axm≠bxm 2 gab�� . (2)

We parametrize the world sheet in a Gauss map by
xm�j� � �j0, j1, fi�j��, i � 2, . . . , D 2 2. The value of
the periodic coordinate j0 is 2b�2 # j0 # b�2 with
b � 1�T and T the temperature. Note that at high tem-
peratures �b ø 1� , the scale M2 can be temperature de-
pendent. This is not unusual in closed string theory as has
251601-2
been shown by Atick and Witten [22]. The value of j1 is
2R�2 # j1 # R�2; fi�j� describe the D 2 2 transverse
fluctuations. We look for a saddle-point solution with a
diagonal metric gab � diag�r0, r1�, and a Lagrange mul-
tiplier of the form lab � diag�l0�r0, l1�r1�. The action
then becomes

S � S0 1 S1 ,

S0 � Aext
p

r0r1

∑
t

µ
r0 1 r1

r0r1

∂
1 l0

µ
1 2 r0

r0

∂

1 l1

µ
1 2 r1

r1

∂∏
,

(3)

S1 �
Z

d2j
p

g ≠afi

∑
gab

µ
t 1

1
M2 D 4

∂
1 lab

∏
≠bfi ,

where bR � Aext is the extrinsic, projected area in coordi-
nate space, and S0 is the tree-level contribution. Integrating
over the transverse fluctuations in the one-loop term S1, we
obtain, in the limit R ! `,
S1 �
D 2 2

2
R
p

r1

1X̀
n�2`

Z dp1

2p
ln

∑
t�v2

n 1 p2
1 � 1 p2

1l1 1 v2
nl0 1

1
M2 �v2

n 1 p2
1 �3

∏
, (4)
where vn �
2p

b
p

r0
n. At high temperatures, satisfying

�M2b2� �tb2� ø 1 , (5)

the sixth-order term in the derivatives dominates in the
one-loop term S1 when n fi 0. Using analytic regular-
ization
R

reg dx ln�x2 1 a2� � 2pa, and analytic continu-
ation of the formula

P`
n�1 n2z � z �z�, for the Riemann

zeta function, with z �21� � 21�12, we obtain for the
n fi 0 contribution
D 2 2
2

R
p

r1

1X̀
n�2`

Z dp1

2p
ln

�v2
n 1 p2

1 �3

M2 �
D 2 2

2

r
r1

r0
12p

R

b

1X̀
n�1

p
n2 � 2

D 2 2
2

r
r1

r0

pR

b
. (6)

For n � 0, instead, we rewrite

ln

∑
p2

1�t 1 l1� 1
1

M2 p6
1

∏
� ln

p2
1

M2

1 ln��p2
1 1 iM

p
l1 1 t� �p2

1 2 iM
p

l1 1 t�� .
The integral over p1 of the first term of the above equation
is zero in analytic regularization, while for the second term
we obtain

D 2 2
2

R
p

r1

Z dp1

2p
2 Re ln�p2

1 1 iM
p

l1 1 t� �

D 2 2
2

R
p

r1

p
2M �l1 1 t�1�4. (7)

The action S � �S0 1 S1� then becomes

S � S0 1
D 2 2

2
R
p

r1

∑
p

2M �l1 1 t�1�4 2
p

b
p

r0

∏
.

(8)

The factor D22
2 in �S0 1 S1� ensures that, for large D,

the fields r0, r1, l0, and l1 are extremal and thus satisfy
the four-gap equations:
1 2 r0

r0
� 0 , (9)

1
r1

� 1 2
D 2 2

2
1

4b

p
2M

�l1 1 t�3�4
, (10)

∑
1
2

�t 2 l1� 1
1

2r1
�l1 1 t� 2 t 2 l0

∏
1

D 2 2
2

p

2b2 � 0 , (11)

�t 2 l1� 2
1
r1

�l1 1 t� 1

D 2 2
2

1
b

∑
p

2M �l1 1 t�1�4 2
p

b

∏
� 0 . (12)
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Substituting (12) into (8) and using r0 � 1 from (9) we
obtain a simplified form of the effective action:

Seff � AextT

s
1
r1

, (13)

with T � 2�l1 1 t� representing the physical string
tension.

By inserting (10) into (12), we obtain an equation for
�l1 1 t� alone:

�l1 1 t� 2
D 2 2

2
5

8b

p
2M �l1 1 t�1�4 1

D 2 2
2

p

2b2 2 t � 0. (14)

Without loss of generality we set

�l1 1 t�1�4 �

p
2M

g
, (15)

where g is a dimensionless parameter. It is possible to
show that, at high temperatures, when

tb2 ø
D 2 2

2
, (16)

we can completely neglect t in (14). Indeed, as we now
show, l1 is proportional to �D 2 2��b2. Note that this
is compatible with the condition (5) used before. We can
thus rewrite (14) as

l1 2
D 2 2

2
5

8b
gl

1�2
1 1

D 2 2
2

p

2b2 � 0 . (17)

We now restrict ourselves to the regime
251601-3
G�g, D� �
25
64

g2

µ
D 2 2

2

∂2

2 2p
D 2 2

2
. 0 , (18)

for which (17) admits two real solutions:

�l1
1�1�2 �

5
16b

g
D 2 2

2

1
1

2b

s
25
64

g2

µ
D 2 2

2

∂2

2 2p
D 2 2

2
, (19)

�l2
1�1�2 �

5
16b

g
D 2 2

2

2
1

2b

s
25
64

g2

µ
D 2 2

2

∂2

2 2p
D 2 2

2
. (20)

In both cases l1 is proportional to �D 2 2��b2, which
justifies neglecting t in (14) and implies that the scale M2

must be chosen proportional to 1�b2. Moreover, since
the physical string tension is real we are guaranteed that
M2 . 0, as required by the stability of our model. Any
complex solutions for T would have been incompatible
with the stability of the truncation.

Let us start by analyzing the first solution (19). By
inserting (19) in (11), we obtain the following equation
for r1:

1
r1

� 1 2
4

5 1

r
25 2

128p

g2 D22

2

. (21)

Owing to the condition (18), 1�r1 is positive and, since
l

2
1 is real, the squared free energy is also positive:
F2�b� �
S2

eff

R2
�

1
b2

µ
5
16

g
D 2 2

2
2

1
2

q
G�g, D�

∂4µ
1 2

4

5 1

r
25 2

128p

g2 D22

2

∂
. (22)
In this case the high-temperature behavior is the same as in
QCD, but the sign is wrong, exactly as for the rigid string.
There is, however, a crucial difference: (22) is real, while
the squared free energy for the rigid string is imaginary,
signaling an instability in the model.

If we now look at the behavior of r1 at low temperatures,
below the deconfining transition [17], we see that 1�r1 is
positive. The deconfining transition is indeed determined
by the vanishing of 1�r1 at b � bdec. In the case of (19)
this means that 1�r1 is positive below the Hagedorn tran-
sition, touches zero at bdec, and remains positive above it.
Exactly the same will happen also for F2, which is pos-
itive below bdec, touches zero at bdec, and remains posi-
tive above it. This solution thus describes an unphysical
“mirror” of the low-temperature behavior of the confining
string, without a real deconfining Hagedorn transition. For
this reason we discard it.

Let us now study the solution (20). Again, by inserting
(20) in (11), we obtain for r1 the equation
1
r1

� 1 2
4

5 2

r
25 2

128p

g2 D22

2

. (23)

In this case, when

g . 4
r

p

3

µ
D 2 2

2

∂21�2

, (24)

1�r1 becomes negative. The condition (24) is consistent
with (18) and will be taken to fix the values of the range
of parameter g that enters in (15). We restrict ourselves
to those that satisfy (24). Since r0 � 1 and l1 is real and
proportional to 1�b2, we obtain the following form of the
squared free energy:

F2�b� � 2
1

b2

µ
5
16

g
D 2 2

2
2

1
2

q
G�g, D�

∂4

3

µ
4

5 2

r
25 2

128p

g2 D22

2

2 1

∂
. (25)
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In the range defined by (24) this is negative. For this solu-
tion, thus, both 1�r1 and F2 pass from positive values at
low temperatures to negative values at high temperatures,
exactly as one would expect for a string model undergo-
ing the Hagedorn transition at an intermediate tempera-
ture. In fact, this is also what happens in the rigid string
case, but there, above the Hagedorn transition, there is a
second transition above which, at high temperature, l1 be-
comes large and essentially imaginary, giving a positive
squared free energy. This second transition is absent in
our model.

A consistency check is made to look if the two solutions
(19) and (20), together with (15) and (24), are compatible
with the validity range (5) of our high-temperature approxi-
mation. Ignoring numerical factors and subleading terms
in D22

2 , (5) becomes

tb2 ø
D 2 2

2
, (26)

which is exactly the condition (16).
Let us now compare the result (25) with the correspond-

ing one for large-N QCD [7]:

F2�b�QCD � 2
2g2�b�N

p2b2 , (27)

where g2�b� is the QCD coupling constant. First of all, let
us simplify our result by choosing large values of g:

g ¿

s
128p

25

µ
D 2 2

2

∂21�2

.

In this case (25) reduces to

F2�b� � 2
1

b2

8p3

125
D 2 2

g2 . (28)

This corresponds exactly to the QCD result (27) with the
identifications

g2 ~
1

g2
,

N ~ D 2 2 .

The weak b dependence of the QCD coupling g2�b� can
be accommodated in the parameter g. Note that our re-
sult is valid at large values of g, i.e., small values of g2,
as it should be for QCD at high temperatures [23]. Note
also the interesting identification between the order of the
gauge group and the number of transverse space-time di-
mensions. Moreover, since the sign of l1 does not change
at high temperatures, the field xm is not unstable. The con-
trary happens in the rigid string case [6], where the change
of sign of l1 gives rise to a world-sheet instability.
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