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Comment on “Simple One-Dimensional Model of
Heat Conduction which Obeys Fourier’s Law”

In a recent Letter, Garrido ef al. [1] consider heat con-
duction in a 1D model of N hard point particles of alternat-
ing masses. Based on numerical results, the authors claim
that this momentum conserving model exhibits Fourier’s
law. We comment on the contradiction with an earlier re-
sult of Prosen and Campbell [2] (PC). We then point out
certain inconsistencies in their results.

The authors first measure the system size dependence
of the mean current (J) = (N1, myui /2), where m,,
x;7, and u; denote the mass, position, and velocity of the
[th particle. As they correctly point out, one cannot make
definite conclusions from this simulation data, since the
asymptotic regime may not have been reached. Next, the
authors compute the correlation C(r) = N{J(¢)J(0)) and
find a decay C(¢) ~ ¢!, which is sufficiently fast to give
a finite Kubo conductivity . This contradicts the exact
result of PC on infinite k in momentum conserving sys-
tems. Their proof applies to this model. However, Gar-
rido et al. work in the zero-momentum ensemble where
PC makes no predictions. As pointed out in [3], the cor-
rect Kubo formula involves the connected part of C(z) [4],
or, one may fix the momentum to be zero as [1] have done.
Thus, PC does not prove divergence of «.

However, some aspects of the paper are unsatisfactory.
First, the linear temperature profiles obtained are incon-
sistent with the finding of finite k. The temperature (7')
dependence of k can be scaled out from the Kubo for-
mula giving k ~ T'/2. This follows since the correlation
Cr(1) has the scaling form Cr7(r) = T3C(T"/?t). Kinetic
theory arguments also give xk ~ 7'/2. This implies non-
linear temperature profiles. In our study [5], we see the
expected nonlinear profiles. The difference could be be-
cause [1] uses deterministic heat baths while we use sto-
chastic baths. It is not clear how well such deterministic
baths simulate true thermal baths. Another source of error
is that [1] defines a local temperature from the mean energy
and position of each particle. In 1D, position fluctuations
are large (~+/N) and the correct method is the one we
use: Define local number and energy densities as n(x) =
(X 8(x — x1)), €(x) = (X, (myuj /2)8(x —x;)), and then
define T(x) =2€(x)/n(x).

Second, our simulations do not verify the results of [1].
The authors computed C(¢) and also c(z) = (j;(¢);:(0)).
They find, for m; # my, C(¢r) and c(¢) have the same decay
~1/t13, while for m; = my, c¢(t) ~ 1/£3. Our results are
summarized in Fig. 1. The main differences with [1] are:
(i) we do not find any evidence for the decay C(¢) ~ 1/t'3.
The behavior we find is consistent with the decay J ~
1/N°33 found in [5]. (ii) c(z) behaves differently from
C(t) contrary to the claim in [1]. The authors comment that
c(r) has better averaging properties, and, because it shows
roughly the same decay, this confirms the behavior seen
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FIG. 1. Plot of C(z) for N = 100 (dotted line), 200, 400, and
800 (solid line) (T = 1, my/m; = 2). The straight line has a
slope —0.83. The inset shows c¢(¢) for N = 100 (dotted line),
200, and 400 (solid line).

for C(r). But is there any reason to expect C(r) and c(r)
decay similarly? In fact, for m; = m,, C(t) is a constant
while ¢(¢) is not. (iii) The equal mass case is nonergodic
since there are a macroscopic number of conservation laws.
Thus, time averages depend on initial conditions. Our sim-
ulations verify this. We also find that making the masses
slightly unequal restores ergodicity. Thus, it is hard to un-
derstand the decay c(t) ~ 1/¢ obtained by [1]. We note
Jepsen [6] (quoted by [1]) gives only (v;(t)v;(0)) ~ 1/¢£3
while ¢(z) is more like (v; (1)v7 (0)). Also, Jepsen does not
treat zero-momentum ensemble. In our simulations, aver-
ages were taken over 10°—10' collisions. As checks, we
found that C(0) and ¢(0) agree with exact results and that
C(r) and c(r) satisfy the scaling forms given above.
Thus, there is no evidence for validity of Fourier’s law
in this model. I thank Onuttom Narayan for discussions.
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