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We show that bipartite quantum states of any dimension, which do not have a positive partial transpose
(NPPT), become 1-distillable when one adds an infinitesimal amount of bound entanglement. To this
end we investigate the activation properties of a new class of symmetric bound entangled states of full
rank. It is shown that in this set there exist universal activator states capable of activating the distillation
of any NPPT state. The result shows that even a small amount of bound entanglement can be useful for
quantum information purposes.
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Introduction.—The possibility of distillation plays a
crucial role in quantum communication and quantum infor-
mation processing (cf. [1]). Together with quantum error
correction it enables all the fascinating applications pro-
vided by quantum information theory in the presence of
a noisy and interacting environment. Despite its practical
relevance and quite considerable effort in that direction,
however, many of the basic questions concerning distil-
lation are yet unanswered. Most notable is the question
whether a given quantum state is distillable or not, i.e.,
whether it is possible to obtain pure maximally entangled
states from several copies of it by means of local opera-
tions and classical communication (LOCC).

A necessary condition for the distillability of a state de-
scribed by a density matrix r is the fact that its partial
transpose rTA , defined with respect to a given product ba-
sis by �ijjrTA jkl� � �kjjrjil�, has a negative eigenvalue
[2]. Except for special cases like states on �2 ≠ �n [3,4]
and Gaussian states [5], it is, however, unclear whether this
condition is sufficient as well. There is some evidence pre-
sented in [4,6] that this may not be the case and that there
are indeed undistillable states, whose partial transpose is
not positive (NPPT). At least there exist n-undistillable
NPPT states for every finite n, meaning that no LOCC op-
eration on n copies leads even to a single entangled two
qubit state [4,6].

However, if we enlarge the class of allowed distillation
protocols from LOCC to channels respecting the positivity
of the partial transpose, then every NPPT state becomes
1-distillable [7,8] (which can be shown by using entangle-
ment witnesses [8]). Moreover, it is a result from [9] that
these channels can always be stochastically implemented
by an LOCC operation where the two parties are given an
entangled state with positive partial transpose (PPT) as an
additional resource. The latter is known to be bound en-
tangled since the entanglement needed for the preparation
of the state cannot be recovered by distillation [2]. Nev-
ertheless, PPT bound entangled states can be useful in or-
der to activate the distillability of bipartite NPPT states
[10,12].

The aim of the present paper is to investigate the limits
and requirements of such an activation process. We will
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show that there exist states with an arbitrary small amount
of PPT bound entanglement, which are capable of activat-
ing any NPPT state. The required additional resource is
therefore universal as well as arbitrarily weakly entangled.

Preliminaries on symmetric states.—One of the key
ideas in what follows will be the exploitation of the sym-
metry properties of states commuting with certain local
unitaries. Two well known one-parameter families of such
states are the Werner states and isotropic states, both play-
ing an important role in the sequel.

Werner states [16] acting on a Hilbert space H �
HA ≠ HB with dimensions dimHA � dimHB � d
commute with all unitaries of the form U ≠ U and can
be written as

r�a� �

µ
1 2

a

d
�

∂
��d2 2 a�, a [ �2d,d� , (1)

with � being the flip operator defined with respect to some
product basis by �jij� � jji�. A Werner state is entangled
iff a [ �1, d� and 1-distillable iff a [ �d�2, d�. More-
over, it was shown in [14] that any NPPT state can be
mapped onto an entangled Werner state by means of LOCC
operations. Therefore we can in the following restrict our
discussion to the activation of Werner states keeping in
mind that the obtained results hold for any NPPT state.

Isotropic states [14,15] commuting with all unitaries of
the form U ≠ Ū (where Ū is the complex conjugate of U)
are combinations of the maximally mixed state 1�d2 and
the projector � � jV� �Vj onto the maximally entangled
state jV� � 1�

p
d

Pd
i�1 jii�:

v�f� � f� 1
1 2 f

d2 2 1
�1 2 ��, f [ �0, 1� . (2)

An isotropic state v is known to be 1-distillable iff the
maximally entangled fraction f � �VjvjV� . 1�d,
which is a sufficient condition for any other state as well
[14]. Hence, an activation protocol succeeded if this
condition is fulfilled by the final state.

The symmetric states playing the central role in
the present paper act on a larger Hilbert space H �
HA1 ≠ HA2 ≠ HB1 ≠ HB2 of total dimension d4, where
A and B again label the two parts of the system situated at
© 2002 The American Physical Society 247901-1
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different locations. The symmetry group under con-
sideration is the group of all unitaries of the form
W � �U ≠ V �A ≠ �U ≠ V̄ �B. States s commuting with
all these unitaries can most easily be expressed in terms
of the minimal projectors �Pi	 spanning the commutant of
the group [16]:

; W : �s, W � � 0 , s �
4X

i�1
liPi�tr�Pi� , (3)

with

P1
2 �

1
2

�1 7 ��1 ≠ �2 , (4)

P3
4 �

1
2

�1 7 ��1 ≠ �1 2 �2� . (5)

Note that, as labeled by the indices, the tensor products
correspond to a split 1j2 (and not AjB�. Positivity and nor-
malization of s requires li $ 0 and

P4
i�1 li � 1 such

that any state of the considered symmetry can be charac-
terized by a vector �l [ �3 lying in a tetrahedron, which
is given by these constraints. We note further that the set
of symmetric states in (3) is Abelian; i.e., all symmetric
states commute with each other.

The activation protocol we use follows closely an idea
of Ref. [9]. Initially the two parties A and B are supposed
to share a Werner state r�a� acting on H0 � HA0 ≠
HB0

with dimH0 � d2 and a symmetric state s on H1 ≠

H2 given by Eq. (3). After a local filtering operation is ap-
plied by projecting onto maximally entangled states �A0,1

and �B0,1 (acting on HA0 ≠ HA1 and HB0 ≠ HB1 , re-
spectively) the maximally entangled fraction of the result-
ing state on system 2 is given by

f���r�a�; s��� : �
tr����r�a� ≠ s��� ��A0,1 ≠ �B0,1 ≠ �2��
tr����r�a� ≠ s��� ��A0,1

≠ �B0,1
≠ 12��

.

(6)

We know that s activates r�a� if f���r�a�; s��� . 1�d.
Since the output state of the protocol is itself isotropic,
this condition is also necessary for the activation.

Of course, we are interested only in cases where a [
�1, d�2�, i.e., r�a� is entangled but not 1-distillable, and s

is in turn a PPT bound entangled state. The latter requires
the classification of the symmetric states in (3), which is
the content of the next section.

Classification and Activation.—The following discus-
sion will mainly take place in the three dimensional space
given by the expansion coefficients �l � �l1, l2, l3�
from Eq. (3). A vector �l corresponds to a (positive and
normalized) symmetric state s� �l� iff �l [ S � � �y [
�3jyi $ 0,

P
i yi # 1	, where the state space S is a

tetrahedron.
The set P corresponding to normalized operators with a

positive partial transpose can easily be obtained by observ-
ing that the symmetry group of the partially transposed op-
erators sTA in (3) is equal to the group of unitaries W when
247901-2
interchanging the systems 1 $ 2. The respective minimal
projectors �Qi	 can therefore be obtained from the pro-
jectors �Pi	 simply by relabeling the systems 1 $ 2, and
the kth coordinate of an extreme point �p�i� of P is thus
given by

p
�i�
k � tr�QTA

i Pk��tr�Qi� . (7)

Hence, P is again a tetrahedron and Eq. (7) leads to the
extreme points:
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2d
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1 2 d2

2d

∂
,
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µ
1 2 d

2d
,
1 1 d

2d
,
2�d 2 1�2

2d

∂
,

�p�3� �

µ
21
2d

,
21
2d

,
d 1 1

2d

∂
,

�p�4� �

µ
1

2d
,

1
2d

,
d 2 1

2d

∂
.

Straightforward linear algebra now allows us to com-
pute the extreme points � �t�i�	 of the intersection S > P

corresponding to the set of symmetric PPT states, which is
shown in Fig. 1:
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FIG. 1. The set of symmetric PPT states s (thick wired ob-
ject) parametrized by the three coordinates li � tr�sPi �, plot-
ted for d � 3. The solid object inside corresponds to the set
of separable states. The universal activators lie on the plane
� �t�3�, �t�4�, �t�5�	 and contain an arbitrary small amount of en-
tanglement near the line � �t�3�, �t�4�	.
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1
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,

1
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The PPT state space given by the convex hull of these
points can be divided into three parts: separable states,
as well as activating and not activating bound entangled
states.

(i) Separable states: A vector �l [ S > P corresponds
to a separable symmetric state iff we can find any (not
necessarily symmetric) separable state rsep such that li �
tr�Pirsep� (cf. [15]).

A special case of a symmetric separable state is, of
course, a tensor product of a Werner and an isotropic state
s � r�a�1 ≠ v�f�2, where both are separable. In fact, if
we choose these two states lying on the separable bound-
aries, i.e., a [ �2d, 1	 and f [ �0, 1�d	, we retrieve the
extreme points �t�1�, . . . , �t�4�.

Another point �t�0� � � 1
2d , 0, d22

4d � that will also turn out
to be an extreme point of the set of separable symmetric
states is obtained from the product state:

rsep � jF1� �F1jA ≠ jC2� �C2jB, (8)

where jF1� �
1
p

2
�j11� 1 j22�� and jC2� �

1
p

2
�j12� 2

j21�� are two-dimensional maximally entangled states.
The convex hull of the points �t�0�, . . . , �t�4� (see Fig. 1)

already covers the entire separable region as we are go-
ing to show in the following that the complement of this
polytope within S > P corresponds to bound entangled
states.

(ii) Bound entangled and activating: The equation
f���r�a�; s� �l���� �

1
d written out as

P
i ci�a�li � 0, with

ci�a� �
tr����r�a� ≠ Pi��� ����A0,1 ≠ �B0,1 ≠ �d� 2 1�2����

tr�Pi�

is linear in li and thus defines a plane separating sym-
metric states activating r�a� from states apparently not
activating it. The task is now to construct this separating
plane depending on the parameter a.

As we have already used above, the points �t�3�, �t�4�

correspond to product states of the form s � r�a�1 ≠

v� 1
d �2 for which f���r�a�; s��� �

1
d obviously holds for any

Werner state r�a�. Thus �t�3�, �t�4� are two fixed points of
the separating plane with respect to a variation of a, and
we need to know only one more point. For this purpose we
consider the line �l�t� � t �t�5� 1 �1 2 t��t�1�. Solving the
equation f���r�a�; s��� �l�t������� �

1
d yields the required third

point with

t �
2 1 d

2a 1 d
. (9)
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This is obviously a strict monotone function in a, and it
leads to the following properties of the separating plane.

(1) For a �
d
2 corresponding to the boundary Werner

state which is not 1-distillable, Eq. (9) leads to �l�t� � �t�0�,
showing that �t�0� indeed lies on the boundary of the set of
separable states. That is, any PPT state in front of the plane
� �t�0�, �t�3�, �t�4�	 must be bound entangled since it activates
at least r�a �

d
2 �.

(2) In the limit a ! 1, i.e., r�a� becoming less and
less entangled, �l�t� approaches �t�5�. However, for any
a � 1 1 ´, ´ . 0 the polytope � �t�0�, �t�3�, �t�4�, �l�t�	 has a
nonempty interior corresponding to PPT bound entangled
states capable of activating any r�a� with a . 1 1 e.

(3) Except for the line � �t�3�, �t�4�	 all PPT states on the
plane � �t�3�, �t�4�, �t�5�	 lie on the activating side of the sepa-
rating plane for any a . 1. The corresponding symmetric
states can thus be considered to be universal activators in
the sense that they activate any entangled Werner state and
therefore any NPPT state.

The set of bound entangled universal activators con-
tains states arbitrarily close to the line � �t�3�, �t�4�	 which
in turn corresponds to separable states. By the continu-
ity properties of the entanglement measures entanglement
of formation [17] and relative entropy of entanglement
[18] this geometric vicinity, however, translates directly to
the proposition that these states contain an arbitrary small
amount of entanglement.

(iii) Bound entangled and not activating: In order to
complete the classification of the symmetric states in-
troduced in Eq. (3) we have still to determine the en-
tanglement properties of the states corresponding to the
tetrahedron � �t�0�, �t�2�, �t�4�, �t�5�	. The plane separating this
set from the separable states derived above is characterized
by a linear operator W via tr�Ws� �l�� � 0, where

W � �1 2 ��1 ≠

µ
1 2

d
2

�

∂
2
. (10)

However, this operator is an entanglement witness
(cf. [19]), meaning that tr�Wr� $ 0 holds for any sep-
arable state r. In order to see this property we have
just to utilize the results from [4,6], where it was shown
that 1 2

d
2 � has a positive expectation value on any

pure state of Schmidt rank two. Since the antisymmetric
projector 1

2 �1 2 �� is a sum of Schmidt rank two states,
�fA ≠ cBjWjfA ≠ cB� is a sum of such positive expec-
tations for any pure product state jfA ≠ cB�. Hence,
tr�Wr� $ 0 is indeed fulfilled by any separable state im-
plying that the tetrahedron under discussion corresponds
to bound entangled symmetric states which are, however,
not activating (with respect to the considered protocol).

Conclusion.—We investigated the entanglement proper-
ties of a new Abelian set of symmetric states with regard
to the activation of NPPT distillation. The set contains
PPT bound entangled states of full rank providing a uni-
versal resource for the activation of any NPPT state (in
247901-3
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any finite dimension). Some of these universal activators
lie arbitrarily close to separable states. Hence, the acti-
vation process turns out to require only an infinitesimal
amount of entanglement. This indicates that the difference
between 1-distillable and n-undistillable or even bound en-
tangled NPPT states is very subtle. Moreover, the above
results show that even weakly entangled bound entangled
PPT states can be useful for some quantum information
processing purposes [20].

As the problem discussed in this paper is primarily a
feasibility problem, we have at this stage not asked for
the obtained rates. In fact, one could, for instance, easily
improve the probability of success for the used activation
protocol by a factor of d2 by measuring in a basis of max-
imally entangled states and retaining the state whenever
the measurement outcomes coincide. An interesting ques-
tion going one step further and requiring knowledge about
rates is whether there is the possibility of self-activation
after some initial activation with a limited resource took
place. In other words, is it possible to yield asymptotically
more entanglement from distillation than is needed for the
preparation of the activator states?
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