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Coupling of the Lattice and Superlattice Deformations and Hysteresis in Thermal Expansion
for the Quasi-One-Dimensional Conductor TaS3
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An original interferometer-based setup for measurements of length of needlelike samples is developed,
and thermal expansion of o-TaS3 crystals is studied. Below the Peierls transition the temperature hystere-
sis of length L is observed, the width of the hysteresis loop dL�L being up to 5 3 1025. The behavior
of the loop is anomalous: the length changes so that it is in front of its equilibrium value. The hysteresis
loop couples with that of conductivity. With lowering the temperature down to 100 K the charge-density
waves’ elastic modulus grows achieving a value comparable with the lattice Young modulus. Our results
could be helpful in consideration of different systems with intrinsic superstructures.
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Internal degrees of freedom is a feature of a random
system; in principle, they can give rise to metastable size
states resulting, say, in hysteresis in thermal expansion [1].
A special class is formed by the compounds with intrinsic
superstructures. Comprising two periodicities, generally
incommensurate, the compounds occupy an intermedi-
ate place between genuine aperiodic and truly periodic
systems [2]. In these systems, such as charge- and spin-
density waves (CDW and SDW) [3], Wigner crystals,
superconductors in magnetic fields [4], and structurally
incommensurate crystal phases [5], the superstructure
periodicities could be varied by external fields or tempera-
ture changes. The resulting metastable configurations can
be reflected back onto the elastic properties and size of
the underlying lattice [3–5], though this question is still
poorly understood.

Quasi-one-dimensional conductors with CDW belong
to a widely studied class of materials, in which intrin-
sic superstructure develops through the Peierls transition
[6]. When electrons condense into CDW they form a de-
formable medium—an electronic crystal. Deformation of
the CDW affects their main static and dynamic properties
and gives rise to metastability and hysteresis.

The straightforward treatment of the CDW as a spring,
whose strain is just applied to the crystal at the ends or via
the impurities is not valid. Moreover, in the simple one-
dimensional model the strains of the CDW and the crystal
do not couple at all: if initially the CDW are relaxed, any
change of the crystal length would not draw the CDW away
from the equilibrium, i.e., give rise to a CDW deformation
[7], as was noticed in Refs. [8–11]. Similarly, once the
CDW is deformed, any change of the lattice constant, c,
would neither decrease nor increase the deviation of the
CDW wavelength l from the equilibrium value, leq. So,
within this model a CDW deformation would not give rise
to a length change.

At the same time, the interaction of the CDW and the
lattice is clearly seen from the elastic anomalies, including
a drop of the Young modulus of the lattice [8–11], Yl , up to
4% [10], when the CDW become depinned. Mozurkewich
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[8] has concluded that the lattice deformation does give
rise to a deformation of the CDW: when the CDW are at
rest, they cannot relax, and so they contribute to the total
elastic energy; the sliding CDW relax rapidly and their
contribution drops out [8]. For his model Mozurkewich
[8] introduced an empirical parameter g reflecting the de-
viation of leq from the simple one-dimensional model:

dleq�c��leq�ceq� � �g 1 1�dc�ceq , (1)

g fi 0. However, no way was proposed to estimate g.
Another remarkable observation was reported in

Ref. [12]: the length L of TaS3 samples as a function of
electric field demonstrated hysteresis partly scaling with
that of resistance. The values of L obtained at different
directions of the voltage sweep differed by �1026. This
result was also treated in terms of coupling of the CDW
strains with the deformation of the pristine lattice. Note
that the field-induced length change (as well as the change
of resistance) results only from an inhomogeneity of the
sample properties: obviously, the length could depend on
the voltage polarity only if the inversion symmetry of the
sample is broken [12]. Thus, study of the electric-field
induced hysteresis of length cannot provide complete
understanding of the CDW-lattice coupling.

To study the effect of the CDW deformation on the
crystal length it could be more fruitful to observe thermal
hysteresis of L. With changing temperature the q vector
(q � 2p�l) falls behind its equilibrium value, which is
temperature dependent [13]; the deviation of q from the
equilibrium is limited by the critical deformation at which
the phase slippage (PS) begins [14]. So, thermal cycling
creates a CDW deformation, which is relatively uniform
along the sample and is of the maximum possible value.

For our study we chose o-TaS3 as a representative CDW
conductor. Among the quasi-one-dimensional conductors
TaS3 is one of the most widely studied, including the
elastic properties. TaS3 demonstrates the Peierls transi-
tion at TP � 220 K, below which the resistance follows
an activation law revealing the half-gap D � 700 K. The
© 2002 The American Physical Society 246401-1
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dependence R�T� demonstrates a pronounced hysteresis,
the width of the loop dR�R being up to 50% at T around
100 K.

In the present Letter we report temperature hysteresis of
length for o-TaS3; the hysteresis couples with that of resis-
tance having an anomalous sign. A quantitative treatment
of the effect is proposed.

We studied samples of TaS3 with typical length 1 mm,
width 15 35 mm, and thickness 5–10 times less. The
samples were arranged on a transparent glass substrate
(Fig. 1a). The contacts were fixed on the substrate with
indium, while the central part of the sample formed an
arc. The inner surface of the substrate played the role
of a semitransparent mirror. The laser beam with wave-
length ll � 635 nm fell down through the substrate and
partially reflected from the inner surface of the substrate
and from the sample surface forming an interference pat-
tern (similar with the wedge interference). The pattern
was fixed with a video camera combined with a micro-
scope. An example of such a pattern is shown in Fig. 1b.
The neighboring dark or bright fringes correspond with
change of the sample distance y from the substrate sur-
face by 6ll�2. Making sections of such images (an ex-
ample is shown in Fig. 1c) we obtained the profiles y�x�
of the samples, such as the curve presented in Fig. 1d. Fi-
nally, the length of such curves was calculated. We de-
tect a length change about 5 Å which corresponds to the
relative length change dL�L � 5 3 1027, though in prin-
ciple the sensitivity could be improved [15]. Our estimates
have shown that the contributions to dL due to the changes
of stress and Yl are negligible [16]. Thus, the observed
changes of L with temperature were associated with the
change of the equilibrium sample length with respect to
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FIG. 1. (a) Arrangement of a TaS3 sample on the substrate and
the scheme of the reflections and interference of the laser beams
(the incidence is close to normal). (b) An example of an image
obtained. (c) The section of the image. (d) The resulting profile
of the sample. The open circles correspond to the minima in the
section (c) and the closed circles to the maxima.
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the substrate. To have absolute results we have measured
the thermal expansion of the glass substrate in addition.

Figures 2a and 2b show the temperature dependences of
length (with respect to glass) and of the resistance for the
representative sample of TaS3. In the inset of Fig. 2a the
absolute dependence of length is shown [18]. The depen-
dences of length and resistance both clearly show hystere-
sis below the Peierls transition temperature TP � 214 K.
The length hysteresis loop opens immediately below TP .
The development of hysteresis is the dominating effect
near TP , on whose background it is difficult to distinguish
a feature coupled to the transition in itself [19]. The length
hysteresis grows below TP achieving dL�L � 5 3 1025

(Fig. 2a), which by 1.5 orders of magnitude exceeds the
maximum value reported in Ref. [12]. At the same tem-
perature the states approached from lower temperature
have higher length than those approached from above.
Correspondingly, application of the electric field exceeding
the threshold reduces the length after heating the sample
and increases after cooling. Thus, the main effect of the
electric field is the relaxation of the thermally induced
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FIG. 2. (a) Temperature dependence of dL�L with respect to
glass. The absolute thermal expansion is shown in the inset.
(b) R�T� measured simultaneously. (c) The width of the length
(the circles) and conductivity (the solid line) hysteresis loops as
a function of T . (d) The ratio �dL�L���dl�l� (open circles)
and gYc�Yl (black circles) resulting from (c). We use Eq. (3)
and the m�T� dependence [17]. The solid line indicates Yc ~
exp�470�T �.
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states. The length change induced by the field in itself was
�1026, as in Ref. [12]. Note that the sign of the hysteresis
is nontypical: the length is in front of its equilibrium value
(inset to Fig. 2a), but not behind.

The length hysteresis apparently couples with the
resistance hysteresis, the higher length corresponding
to a higher resistance at a given temperature [20]. The
coupling between R and L is well seen from Fig. 2c,
where the temperature dependence of dL�L is presented
together with the loop of conductivity, ds � 1�Rcool 2

1�Rheat. Note that in the unipolar approximation ds �
s300�dl�l� �m�m300� [21], where the index “300” marks
the room-temperature values. So, the s hysteresis reflects
that of the CDW wavelength to the accuracy of the
temperature dependence of the mobility m, which in turn
can be found from Ref. [17]. Figure 2d shows the ratio
�dL�L���dl�l� vs T . At the low temperatures dL�L is
�6% of the CDW deformation.

As we have noticed in the beginning, the interactions
of the CDW and the sample cannot be presented as that
of two springs connected in parallel (the lower inset in
Fig. 3). Though we do not see a way to obtain quantita-
tively the strain dependence of the q vector for TaS3, one
can recall experimental results, from which it is possible
to estimate the value of g [Eq. (1)]. It has been found [22]
that at a certain value of uniaxial strain S� the properties of
the CDW change abruptly: e.g., the nonlinear conduction
nearly disappears. This has been attributed to the transition
of the CDW to the fourfold commensurability. Comparing
the normalized dependences of the q vector [13] and of the
strain S� [22] on temperature (Fig. 3) one can see that they
become similar [22] if one multiplies the value of S� by
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FIG. 3. The temperature dependences of S� 2 S�0� (open
circles) [22] and of the wave vector [13] �q 2 q�0���q�0�
(closed circles) [23]. S� is multiplied by g � 6. Insets: the
equivalent schemes illustrating the interaction of the CDW (the
thin-line spring) and the pristine lattice (the thick-line spring).
The lower-left sketch is the naive scheme, which is invalid. The
upper-right sketch illustrates Eq. (3) (g . 1).
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6. Thus, one can assume that a deformation of the lattice
induces the change of the equilibrium CDW wavelength
leq�c� in accordance with Eq. (1) with g � 6. Such a
large value of g indicates that the simple one-dimensional
model [7] cannot even roughly describe the strain-induced
change of leq. Evidently, the change of leq is dominated
by transverse effects: the longitudinal strain decreases the
thickness of the sample resulting in an increase of the in-
trachain coupling. This modifies the form of the Fermi
surfaces and, consequently, the q vector [22]. To compre-
hend the sign and the value of the q change one should
study the evolution of the Fermi surface in detail. In prin-
ciple, we cannot exclude that g is temperature dependent.
However, as we see below, the assumption that g � const,
namely, g � 6, is consistent with our experiment.

For the next step, we present the elastic energy density
W as a sum of the lattice and the CDW energies:

W �
1
2

∑
Yl

µ
c 2 ceq

ceq

∂2

1 Yc

µ
l 2 leq�c�

leq

∂2∏
, (2)

where Yl and Yc are the elastic moduli of the lattice and the
CDW, respectively. Taking into account the condition (1)
[24] and assuming that no PS occurs (l�c � const), we
can minimize W and obtain the resulting length change:

dL

L
�

dc

ceq
� g

Yc

Yl 1 g2Yc

dl

l
� g

Yc

Yl

dl

l
, (3)

where dl is the initial CDW deformation (at fixed c). The
approximation implies that g2Yc ø Yl. Equation (3) is
quite transparent: the crystal deforms as a spring con-
nected in parallel to the CDW, but with a factor 2g. g . 0
means that, say, compressed CDW (l , leq) would re-
sult in a decrease of the sample length, which agrees
with our observation. E.g., cooling corresponds to the
growth of leq [13], so the CDW is in a compressed state
(l 2 leq , 0), which results in decreased L (Fig. 2a).
The CDW-crystal interaction could be illustrated with a
scheme consisting of two springs connected via a lever
(Fig. 3, upper inset).

From Eq. (3) it follows that the ratio �dL�L���dl�l�
(Fig. 2d) equals gYc�Yl. Note, however, that with g � 6,
g2Yc at low temperatures is comparable with Yl , and one
should use the exact version of Eq. (3). The resulting value
of gYc�Yl is also shown in Fig. 2d. One can see the growth
of the CDW elastic modulus with lowering temperature,
though slower than Yc ~ exp�D�T� [14,25] (see the solid
line in Fig. 2d) [26]. Note that the curve �dL�L���dl�l�
vs T resembles the temperature dependences of the lattice
softening in the electric field [10]. This could be expected,
since from Eqs. (1) and (2) it follows that the value g2Yc is
added to Yl when the CDW are at rest, while in the sliding
state the CDW contribution drops out [8].

From the condition of neutrality [25] accompanying the
CDW deformation we can obtain for the CDW Young
modulus: Yc �

dz

dq
q2

ps [14], where dz

dq is the derivative of
246401-3
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the chemical potential level by the CDW q vector, and s is
the area per chain. Substituting this in Eq. (3), we obtain

dL
L

� g
2dz

lsYl
. (4)

For the unipolar (p-type for TaS3) conduction [14,17]
dz � T ln�Rheat�Rcool�. Substituting into Eq. (4) g � 6,
dz � 50 K (for T � 120 K, Fig. 2b), l � 10 Å, s �
80 Å2 (Ref. [27]), Yl � 380 GPa [28], we obtain dL�L �
3 3 1025, in agreement with the experiment (Fig. 2b).
This agreement supports the approach we used to estimate
g and proves that under a certain uniaxial strain (S�) the
CDW in fact transit to the fourfold commensurability [22].

In conclusion, we have observed thermal hysteresis of
length for the quasi-one-dimensional conductor TaS3. In
the framework of the model proposed the observed anoma-
lous sign and value of the hysteresis loop are consistent
with the dependence of the q vector on the lattice strain.
The results could be helpful in understanding the behav-
ior of other systems with intrinsic superstructures, whose
parameters could be rearranged due to the temperature ef-
fects or external fields.
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