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Criteria of Phase Transitions in a Complex Plasma
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New empirical rules for different phase transitions (including the melting of cubic lattices and the tran-
sitions between body-centered-cubic and face-centered-cubic structures) are proposed. The arrangements
of charged macroparticles in a complex “dusty” plasma are numerically investigated for the conditions
of laboratory experiments on weakly ionized gas discharges.
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Complex plasmas containing large (compared with
the sizes of electrons and ions), highly charged colloidal
particles (“dust”) recently attracted wide attention [1–4].
In the majority of laboratory experiments the grains were
immersed in a weakly ionized plasma; the combined
effect of interactions of grains between themselves as
well as with the ambient plasma led to the formation of
structures exhibiting liquidlike behavior [1], as well as
crystals [1,2], clouds and voids [3], and clusters [4].

The simplest model for the three-dimensional (3D)
particle interaction takes into account plasma screening
and therefore the electrostatic interaction potential is of
the Yukawa type

fD �
eZ
l

exp

µ
2

l
l

∂
, (1)

where eZ is the particle charge, l is the plasma screen-
ing length, and l is the interparticle distance. It should be
noted that the Yukawa-type approximation might be un-
suitable for the vertical direction in those laboratory ex-
periments where grains levitate in the sheath region with
strong plasma flows forming the wake potential [5]. Nev-
ertheless, the potential of the Yukawa type (1) can be used
with very good accuracy in the horizontal direction [6], and
it is especially important for the analysis of dust dynamics
in a complex plasma under microgravity conditions where
grains can levitate in the plasma bulk.

The nonideality is usually characterized by the cou-
pling parameter G � �eZ�2�dT which is the ratio of the
Coulomb potential energy of the particle interaction to the
kinetic energy of their thermal motion (here, d � n21�3

is the mean intergrain distance, n is the particle number
density, and the temperature T is in energy units). It is
also well known that phase transitions in Yukawa systems
are determined by two dimensionless parameters: G

and k � d�l. The extensive numerical studies [7–14]
demonstrate that in a Coulomb system of particles the
short-range order appears for G ¿ 1, with the critical
value Gm � 106 on the melting line [10–13] [for complex
plasmas, the assumption of plasma screening (1) leads to
larger Gm]. The studies [14,15] suggest that the condi-
tion of the constant (normalized) nonideality parameter
G� � �1 1 k 1 k2�2� exp�2k�G (namely, G�

m � 106)
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can be used as the melting criterion for the body-centered-
cubic (bcc) lattice. However, the functional dependence
relating G and k with the critical value Gm � f�G, k� is
presently unknown for the transitions of face-centered-
cubic (fcc) lattice into the liquid as well as for the tran-
sitions between the bcc and fcc structures. Some authors
suggest various linear approximations of numerical data
for different parts of the phase diagram [7,9]; these ap-
proximations usually appear as a result of the best mathe-
matical fit, though sometimes being not fully justified
physically. In this Letter, we propose the criteria of phase
transitions in the Yukawa system by employing simulation
data [7,9,13] obtained for systems without dissipation,
as well as on the basis of new original simulations of
a 3D Yukawa dissipative system, with parameters close
to those in experiments on laboratory weakly ionized
gas-discharge plasmas.

There are various phenomenological criteria for phase
transitions in the Yukawa system used for a complex
plasma. The most popular is the Lindemann criterion
stating that the melting occurs when the ratio of the
root-mean-square displacement D0 of a particle from its
equilibrium position to the average interparticle distance
d achieves 0.15. Since in numerical simulations the
displacement D �

p
2 D0 of a particle from the center

of mass is usually computed, the ratio dc � D�d on the
melting line should be expected about �0.21 (for the
majority of real solids D�d � 0.2 0.25 at the melting
point). However, various numerical simulations give for
the Lindemann parameter the range from 0.16 0.19 for
fcc lattices to 0.18 0.2 for bcc structures. These numbers,
less than 0.21, may be related to the insufficient number
of particles Np in the modeled systems; we note that
D�d ! 0.2 with the increase of Np for the melting of
the both types of lattices [9]. Another popular criterion,
proposed by Hansen and Verlet [16], defines the value of
the first maximum S1 of the structure factor in the liquid
state to be less than 2.85. These numbers can also vary
(from 2.5 to 3.2) for different simulations and strongly
depend on the definition of the structure factor in the
systems with a finite number of particles.

We obtain the condition, analogous to the Lindemann
criterion, with the assumption that the average volume
© 2002 The American Physical Society 245002-1
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of thermal fluctuations Vtf � �aD�3 for the bcc lattice
should not exceed �1 2 p

p
2�8�V � 0.32V , where a �

�4p�3�1�3, V � n21 � �aaW-S�3, and aW-S � �4pn�
3�21�3 is the Wigner-Seitz radius. For a stable fcc struc-
ture to exist, we have Vtf , �1 2 p

p
2�6�V � 0.26V

[17]. Accounting for the possibility of counterdisplace-
ments of particles, Vtf � �2aD�3 (the factor 2), we
find that the value of the ratio D�d must either exceed
0.211 (D0�d $ 0.15) to melt the bcc structure or 0.198
(D0�d $ 0.14) to melt the fcc lattice. The criterion for
the transition between bcc and fcc structures can then be
obtained with the assumption that for the change of the
bcc symmetry of the lattice, the interparticle distances
should exceed l (the intergrain interaction is in this case
similar to that of “hard spheres” when the formation of fcc
structures is possible [18]). Thus, we have the following
expression for the line of transition between the bcc and
fcc structures:

2�1 2 p
p

2�6�21�3D0 � aW-S 2 l , (2)

where �aW-S 2 l� determines the effective size of the re-
gion where a displacement of one particle does not signifi-
cantly influence other particles of the crystal lattice. This
assumption is supported by numerical simulations [13]
where the fcc structure was not formed when aW-S , l

even for G ! `. For the present simulation, the values of
dc and D0�d for various phase transitions are presented
in Table I and Fig. 1; the range of k between 5.8 and 6.8
defines the region with the triple (bcc-fcc liquid) phase
transition.

New empirical rules can be formulated to determine
the normalized coupling parameter Gn � Kn exp�2k�G
as a value close to a constant Cp at the line of different
phase transitions (including the melting of cubic lattices
and the transition between the bcc and fcc structures). The
normalized coefficient Kn and constant Cp can be obtained
from the relationship for the harmonic oscillator:

D2
0 � 3T�mpv2

c , (3)

where mp is the particle mass and vc is the characteristic
frequency of particle vibrations in a lattice. The approxi-
TABLE I. The ratio dc of the most probable displacement D to the mean interparticle distance d, the factors of the nonideality
parameter G � �eZ�2n1�3�T � Cp�Kn exp�2k�	21 on the lines of various phase transitions, as well as the coefficient Cw for the
approximation v2

c � Cwn�eZ�2 exp�2k� of the characteristic oscillation frequencies in bcc and fcc lattices. Here, a � �4p�3�1�3,
k � d�l.

Phase transition dc � D�d Cp Kn Cw

bcc ! liquid �12p
p

2�8�1�3

2a 3p��2d2
c� �1 1 k 1

k2

2 �
�0.211 �106

bcc ! fcc 3p��2 3 0.272� �1 1 k 1
k2

2 � �1 2
a

k �2

�12p
p

2�6�1�3
p

2 a
�1 2

a

k � �64

4
p �1 1 k 1

k2

2 �

fcc ! bcc �0.27�1 2
a

k � 3��0.272a3� k�1 2
a

k �3

�9.8
fcc ! liquid �12p

p
2�6�1�3

2a 3��a3d2
c � k 2 a

�0.198 �18.5

2a3�k 2 a�
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mation (3) takes place when T ¿ QD (QD is the Debye
temperature) and the displacement D0 can be character-
ized by the frequency vc not depending on the tempera-
ture. To determine this frequency, the most frequently used
are the quasiharmonic [7] and/or the Einstein approxima-
tions [7,11] based on the calculations of the oscillation fre-
quency of a particle about its equilibrium position when all
other particles are fixed. For both cases, there is no ana-
lytical form for vc, and the results are usually additionally
adjusted by the linear, quadratic, and/or cubical fits of the
numerical results for various (sufficiently short) parts of
the phase diagrams [7,11].

Earlier, it was demonstrated [12,13,19] that the charac-
teristic frequencies of particle oscillations in complex dust
fluids and bcc lattices are proportional to the dust-lattice
wave frequencies. Thus the frequency vc � vbcc for
the bcc lattice can be obtained from the expression
F � �eZ�2 exp�2l�l� �1 1 l�l�l2 for the intergrain force
assuming that the electric fields of all particles except the
nearest ones are fully compensated [14]: it is determined
by the probability 8�4p of the intergrain collisions and
by the derivative dF�dl at l � d and is given by vbcc �
eZ�4n�pmp� �1�2� �1 1 k 1 k2�2�1�2 exp�2k�2�. Sub-
stituting this expression into Eq. (3) gives Gn � T� and
Cp � 3p��2d2

c � � 106 in accordance with [14,15] (here,
dc �

p
2 D0�d � �1 2 p

p
2�8�1�3�2a � 0.211 at the

melting line of the bcc structure; see Table I).
On the other hand, the assumption that for the fcc struc-

ture vc � vfcc ~ dF�dl leads to G� � const on the crys-
tallization line for lattices of both types thus contradicting
the results of numerical simulations; see Fig. 2. Suitable
approximation v

2
fcc � 2a3n�eZ�2 exp�2k� �k 2 a��mp

can be obtained for a homogeneous system with the
gradient dFS�dl of the sum FS of the electrical forces
estimated as dFS�dl ~ n�eZ�2 exp�2k� �k 2 a�. Thus,
assuming that dc � �1 2 p

p
2�6�1�3�2a on the melting

line of the fcc lattice, we find from Eq. (3) Gn � G�k 2
a� exp�2k�, Cp � 3��a3d2

c� � 18.5 (see Table I), and

G�
m � 18.5�1 1 k 1 k2�2���k 2 a� . (4)
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FIG. 1. Dependence of D0�d on k for various phase transi-
tions: (1) bcc ! liquid; (2) fcc ! liquid; (3) bcc $ fcc: filled
circle: k � 5.8; circle: k � 6.8.

The use of the modified parameter G�
m (4) allows us to illus-

trate the behavior of the melting curves for the transitions
fcc-lattice liquid and bcc-lattice liquid (Fig. 2). The dif-
ference between condition (4) and previous results [9,13]
of modeling the fcc-lattice-liquid phase transition does not
exceed 2% for k . 6.8.

The normalized coupling parameter Gn (see Table I) and
the modified parameter G� at the line of transition from the
bcc to the fcc structure can be obtained from Eqs. (2) and
(3) with vc � vbcc. We have

G� � 64k2�k 2 a�22. (5)

Suitability of condition (5) as a criterion for the bcc-fcc
transition was checked using data [13]. We obtained that
deviation of the calculated values of G� for the bcc-fcc
transition from Eq. (5) is within 62%, as illustrated in
Fig. 2 (curve 3). Taking into account that the possibil-
ity of the reverse transition from the fcc-to-bcc structure is
defined by the frequency vfcc , as a criterion for this tran-
sition we can use

G� � 9.8k2�k 2 a�23�1 1 k 1 k2�2� . (6)

Note that condition (6) depends on the approximation of
the frequency vfcc and therefore can be incorrect for small
k ! a. However, calculations on the basis of (5) and (6)
(curves 3 and 4 in Fig. 2) fully determine the region of
the triple phase transition (k � 5.8 6.8) and agree well
with the results obtained for D0�d (see Fig. 1). We note
that the difference in the positions of curves described by
Eqs. (5) and (6) makes it possible to explain disagreements
of the numerical results on the position of the triple point
in Refs. [9,13].

Since our determination of the coupling parameters on
the lines of phase transitions is based on Eq. (3), their
values are independent on the viscosity of the background
gas. To examine this assumption, we have calculated the
arrangements of grains in a complex plasma for various
245002-3
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FIG. 2. Dependence of G� on k for various phase transitions:
circles: data of [13]; diamonds [9]; squares [8]; triangles [15]
and jump of S1 for various j (filled symbols correspond to
the formation of the fcc lattice); (1) G� � 106 (bcc ! liquid);
(2) fcc ! liquid, Eq. (4); (3) bcc ! fcc, Eq. (5); (4) fcc ! bcc,
Eq. (6).

neutral gas pressures, dust charges and temperatures, and
the plasma screening lengths (k � 2.4 and k � 4.8). The
simulation has been performed by the Brownian dynamics
method with the stochastic Langevin force taking into
account the particle friction with plasma neutrals. To
analyze the particle dynamics, we solve 3D equations
of motion under the periodic boundary conditions, and
the number of independent particles Np � 125; more
details are in Ref. [15]. The ratio between the particle
interaction and dissipation in the system is defined by the
parameter j � vbcc�nfr , where the characteristic friction
frequency is nfr �s21	 � CyP�Torr	��r�g�cm3	r�mm	�;
here, r is the particle radius, r is the particle density,
P is the neutral gas pressure, and Cy is a dimensionless
parameter, defined by the nature of the neutral gas,
e.g., for argon Cy � 840, and for neon Cy � 600.
The equilibrium charge [20] of a dust particle can be
written as Z � Czr�mm	Te�eV	, where Te is the electron
temperature, and Cz is a parameter defined by plasma
components (Cz � 2000 for the majority of experiments
in noble gases). Then for typical experimental conditions
(r � 4 g�cm3, Te � 1.5 eV, Cy � 700, k � 2), we
have j � 1023�4n�cm23	�pr�mm	�1�2�P�Torr	�21. If
the particle radius is r � 2 mm, the number density n
is from 103 to 105 cm23, and the neutral gas pressure is
from 1 to 0.01 Torr, we obtain the range j � 0.04 6.9.

To analyze the ordering of particles in the modeled sys-
tem, we use the structure factor S�q�. The dependences
of the first maxima of S1 for S�q� as well as the ratios of
their positions q � dS1 to the position q1 � 2p�

p
2 n�1�3

of S1 for the crystal bcc structure versus G� are presented
in Fig. 3 for different j � 0.08, 0.26, 0.79, 2.37, and 7.1.
The analysis of these simulations demonstrates that the
normalized coupling parameter G� fully determines the
particle correlations (formation of the long-range order as
well as the short-range ordering) and can be considered
245002-3
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FIG. 3. Dependence on G� of the first maximum of the struc-
ture factor S1 (curve 1) and its position dS1�q1 (curve 2). We
also plot here the ranges of deviations of the computed functions
for various values of j.

as the parameter responsible for ordering in the dissipative
Yukawa system when it changes from G� � 1 up to the
crystallization point. For k , 5.8, the bcc lattice is formed
with the increase of G� ! G�

m; the abrupt changes of S1
from 2.65 to 3.1 is observed in the range from G�

c � 102
to G�

m � 106 (Fig. 3). We stress that G�
cm � 104�62%�

is practically independent of the viscosity of the neutral
gas; that is why this criterion is in agreement with results
of numerical simulations without dissipation [7,9,13] (see
Fig. 2). Deviations of these results from G�

cm are within
65% and can be related to differences in the details of
the numerical methods used, as well as by the particular
choice of the value G either at the melting line or at the
crystallization point of the system. We note that the ob-
tained G�

cm is in agreement with theoretical results [12],
where for the coupling parameter on the line of the phase
transition in a Coulomb system the number 105�63%� was
obtained, also agreeing with the results of calculations of
the liquid-crystal (crystallization) [11] as well as the crys-
tal-liquid (melting) phase transitions [10].

To conclude, we have proposed new phenomenological
criteria for various phase transitions in the Yukawa sys-
tem of charged macroparticles in a complex plasma. The
particle dynamics was studied within the wide range of
245002-4
temperatures and for parameters close to the conditions
of laboratory experiments in weakly ionized gas-discharge
plasma. The parameter responsible for ordering of grains
in the dissipative Yukawa system was obtained. The results
(including criteria for phase transitions) are independent on
the viscosity of the surrounding gas and can be applied for
the analysis of particle dynamics in binary colloidal sys-
tems of various types where the Yukawa-type potentials are
used extensively — for example, in solutions of viruses or
for studies of diffusion-controlled processes in the physics
of polymers.
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