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Compressible Sub-Alfvénic MHD Turbulence in Low-b Plasmas
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We present a model for compressible sub-Alfvénic isothermal magnetohydrodynamic (MHD) turbu-
lence in low-b plasmas and numerically test it. We separate MHD fluctuations into three distinct families:
Alfvén, slow, and fast modes. We find that production of slow and fast modes by Alfvénic turbulence
is suppressed. As a result, Alfvén modes in compressible regime exhibit scalings and anisotropy similar
to those in incompressible regime. Slow modes passively mimic Alfvén modes. However, fast modes
show isotropy and a scaling similar to acoustic turbulence.
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Introduction.—Most astrophysical fluids, including
stellar winds and the interstellar medium (ISM), are turbu-
lent [1,2] with an embedded magnetic field that influences
almost all of their properties. High interstellar Reynolds
numbers (Re � LdV�n . 108; L � the characteristic
scale or driving scale of the system, dV � the velocity
difference over this scale, and n � viscosity) ensure that.
Turbulence spans from km to kpc scales and holds the
key to many astrophysical processes (e.g., star formation,
fragmentation of molecular clouds, heat and cosmic
ray transport, magnetic reconnection [2]). Statistics of
turbulence is also essential for the cosmic microwave
background foreground studies [3].

Kolmogorov scalings [4] were the first major advance in
the theory of incompressible (nonmagnetized) turbulence.
Kolmogorov theory predicts an isotropic power law energy
spectrum �E�k� ~ k25�3� in wave-vector space k.

Attempts to describe magnetic incompressible turbu-
lence statistics were made by Iroshnikov [5] and Kraich-
nan [6]. Their model of turbulence (IK theory) is isotropic
in spite of the presence of the magnetic field and predicts
k23�2 power law energy spectra for both velocity and mag-
netic field. However, the assumption of isotropic energy
distribution in wave-vector space has been criticized by
many researchers [7,8].

An ingenious model very similar in its beauty and
simplicity to the Kolmogorov model has been proposed
by Goldreich and Sridhar [9] (hereinafter GS95) for
incompressible magnetohydrodynamic (MHD) turbu-
lence. It predicts a Kolmogorov-like energy spectra
�E�k�� ~ k

25�3
� � in terms of wave-vector component

k� which is perpendicular to the local direction of
magnetic field. The parallel component of the wave
vector kk ~ k

2�3
� within the model. Numerical simulations

[10–12] support the GS95 model.
In this paper, we study compressible supersonic sub-

Alfvénic MHD turbulence in low-b plasmas.
Theoretical considerations.—While the GS95 model

describes incompressible MHD turbulence well, no
accepted theory exists for compressible MHD turbu-
lence. Earlier theoretical and numerical efforts [13–15]
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addressed effects of compressibility for limited pa-
rameter spaces. In (isothermal) plasmas, there are
three types of MHD waves: Alfvén, slow, and fast
waves. Alfvén modes are incompressible, while slow
and fast modes are compressible. Lithwick and Gold-
reich [16] conjectured that Alfvén modes follow the GS95
model and slow modes passively follow the same scalings
for high b (� Pg�PB � 2a2�V 2

A; Pg � gas pressure;
PB � magnetic pressure; a � sound speed; VA �
Alfvén speed) regime, which is largely similar to the
exactly incompressible regime. They also mentioned that
this relation can carry on for low b plasmas.

In the ISM b is frequently less than unity. For instance,
it is �0.1 or less for molecular clouds. Therefore, we con-
sider low b regime in this paper. Interstellar turbulence
is traditionally thought to be sub-Alfvénic �dV , VA�, al-
though this is not a universally accepted assumption (see,
e.g., [17]). If turbulence is super-Alfvénic initially, we ex-
pect that eventually magnetic energy should approach the
equipartition level [18] and the scales smaller than the en-
ergy injection scale should fall in the sub-Alfvénic com-
pressible regime.

Arguments in GS95 are suggestive that the coupling
of Alfvén to fast and slow modes will be weak. Con-
sequently, we expect that in this regime the Alfvén cas-
cade should follow the GS95 scaling. Moreover, the slow
modes are likely to evolve passively (see [16]), so that
we expect the GS95 scaling for them as well. However,
fast modes are expected to show isotropic distribution as
their velocity does not depend on magnetic field direc-
tion. To test those theoretical conjectures we use numerical
simulations.

Numerical method.—To mitigate spurious oscillations
near shocks, we combine two essentially nonoscillatory
(ENO) schemes. When variables are sufficiently smooth,
we use the third-order weighted ENO scheme [19] with-
out characteristic mode decomposition. When the opposite
is true, we use the third-order convex ENO scheme [20].
We use a three-stage Runge-Kutta method for time inte-
gration. We solve the ideal MHD equations in a periodic
box:
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≠r�≠t 1 = ? �rv� � 0 ,

≠v�≠t 1 v ? =v 1 r21=�a2r� 2 �= 3 B� 3 B�4pr � f ,

≠B�≠t 2 = 3 �v 3 B� � 0 ,

with = ? B � 0 and an isothermal equation of state. Here
f is a random large-scale driving force, r is density, v is
the velocity, and B is the magnetic field. The rms velocity
dV is maintained to be approximately unity, so that v can
be viewed as the velocity measured in units of the rms
velocity of the system and B�

p
4pr as the Alfvén speed

in the same units. The time t is in units of the large eddy
turnover time ��L�dV� and the length in units of L, the
scale of the energy injection. The magnetic field consists
of the uniform background field and a fluctuating field,
B � B0 1 b.

For mode coupling studies (Fig. 1), we use 1443 grid
points and we do not drive turbulence. We explicitly
vary the Alfvén speed of the background field, VA �
B0�

p
4pr0, and/or the sound speed. Here r0 is the av-

erage density. For scaling studies (Fig. 2), we drive tur-
bulence solenoidally in Fourier space and use 2163 points,
VA � 1, r0 � 1, and a �

p
0.1. The average rms velocity

in the statistically stationary state is dV � 0.7. Therefore,
the scaling results reported here utilize Ms�� dV�a� �
2.2, MA�� dV�VA� � 0.7, and b � 0.2.

Mode coupling of MHD waves.—We first describe how
to separate Alfvén, slow, and fast modes in wave-vector (or
Fourier) space. In general, displacement vectors (hence vk)
of slow waves and fast waves are

ĵs ~ kkk̂k 1
1 2

p
D 2 b�2

1 1
p

D 1 b�2

∑
kk
k�

∏2

k�k̂� , (1)

ĵf ~
1 2

p
D 1 b�2

1 1
p

D 2 b�2

∑
k�

kk

∏2

kkk̂k 1 k�k̂� , (2)

where D � �1 1 b�2�2 2 2b cos2u and u is the angle
between k and B0. In the limit of b ! 0, the displace-
ment vectors of the slow waves are almost parallel to
kk �k B0� and those of fast modes are almost parallel
to k� �� B0�. We can obtain slow and fast velocity by

FIG. 1. (a) Decay of Alfvénic turbulence. The generation of
fast and slow waves is not efficient. Initially, b � 0.2 and
B0�

p
4pr0 � 1. (b) The ratio of �dV�2

f to �dV�2
A . The ratio

is measured at t � 3 for all simulations. The ratio strongly
depends on B0, but only weakly on (initial) b. The initial Mach
numbers span 1–4.5.
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projecting velocity component vk onto ĵs and ĵf , re-
spectively. We can obtain velocity and magnetic field
due to Alfvén modes in the same way as in the incom-
pressible case (see [12]): ĵA � k̂k 3 k̂�. To separate
slow and fast magnetic modes, we assume the linearized
continuity equation �vrk � r0k ? vk� and the induction
equation �vbk � k 3 �B0 3 vk�� are statistically true.
From these, we get Fourier components of density and
non-Alfvénic magnetic field:

rk � �r0Dyk,s�cs�k̂ ? ĵs 1 �r0Dyk,f�cf�k̂ ? ĵf

� rk,s 1 rk,f , (3)

bk � �B0Dyk,s�cs� jB̂0 3 ĵsj1 �B0Dyk,f�cf� jB̂0 3 ĵf j

� bk,s 1 bk,f (4)

� rk,s�B0�r0� �jB̂0 3 ĵsj�k̂ ? ĵs�

1 rk,f�B0�r0� �jB̂0 3 ĵfj�k̂ ? ĵf� , (5)

where Dyk ~ y
1
k 2 y

2
k (superscripts “1” and “2”

represent opposite directions of wave propagation) and
subscripts “s” and “f” stand for “slow” and “fast”
modes, respectively. From equations (3), (4), and (5),
we can obtain rk,s, rk,f , bk,s, and bk,f in Fourier space.
We obtain energy spectra (Figs. 2a, 2c, 2e) using this
projection method done in Fourier space. When we
calculate structure functions (Figs. 2b, 2f) we first obtain
the Fourier components using the projection and, then, we
obtain the real space values by performing inverse Fourier
transform of the projected components. However, we use
a different method for the structure function of slow mode
velocity (see Fig. 2d).

The dispersion relation of Alfvén modes and those
of slow and fast modes in the b ! 0 limit are v �
VAkk, v � akk, and v � VAk, respectively. Alfvén
modes are not susceptible to collisionless damping. There-
fore, we mainly consider transfer of energy from Alfvén
modes to the compressible MHD ones (i.e., slow and fast).

To check the strength of the coupling, we first per-
form a forced supersonic sub-Alfvénic MHD simulation
with B0�

p
4pr0 � 1. Using the same data cube obtained

from this simulation, we perform several decaying MHD
simulations. We go through the following procedures be-
fore we let the turbulence decay. We first remove slow and
fast modes in Fourier space and retain only Alfvén modes.
We also change the value of B0 preserving its original di-
rection. We use the same constant initial density r0 for all
simulations. We assign a new constant initial gas pres-
sure Pg [21]. Note that b � Pg��B0�8p�2. After doing
all these procedures, we let the turbulence decay. We re-
peat the above procedures for different values of B0 and
Pg. Figure 1a shows time evolution of kinetic energy of
a simulation. The solid line represents the kinetic energy
of Alfvén modes. It is clear that Alfvén waves do not
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FIG. 2. Scalings relations. Results from driven turbulence with Ms � 2.2, MA � 0.7, b � 0.2, and 2163 grid points. We obtain
spectra by separating Alfvén, slow, and fast modes in Fourier space (see text). (a) Spectra of Alfvén modes follow a Kolmogorov-like
power law. (b) The second-order structure function (SF2) for velocity of Alfvén modes shows anisotropy similar to the GS95
(rk ~ r

2�3
� or kk ~ k

2�3
� ). The structure functions are measured in directions perpendicular or parallel to the local mean magnetic

field in real space. We obtain real-space velocity and magnetic fields by inverse Fourier transform of the projected fields. (c) Spectra
of slow modes also follow a Kolmogorov-like power law. (d) Slow mode velocity shows anisotropy similar to the GS95. We obtain
contours of equal SF2 directly in real space without going through the projection method, assuming slow mode velocity is nearly
parallel to local mean magnetic field in low b plasmas. (e) Spectra of fast modes are compatible with the IK spectrum. (f) The
magnetic SF2 of fast modes shows isotropy. We obtain real-space magnetic field by inverse Fourier transform of the projected fast
magnetic field. Fast mode velocity also shows isotropy.
efficiently generate slow and fast modes. Therefore we
expect that Alfvén modes follow the same scaling relation
as in the incompressible case. Figure 1b shows that the
following relation fits the data well:

�dV �2
f��dV �2

A ~ �dV�A�B0 , (6)

which means the coupling gets weaker as B0 increases
[22]. Note that �dV�A and r0 are constants. This marginal
coupling agrees well with a claim in GS95, incompressible
simulations [12], and earlier studies where the velocity
was decomposed into a compressible component and a
solenoidal component [14,23].

Alfvén Modes.—Figure 2a shows that the spectra of
Alfvén waves follow a Kolmogorov spectrum:

Alfvén waves: EA�k� ~ k
25�3
� . (7)

In Fig. 2b, we plot the second-order structure function
for velocity �SF2�r� � 	jv�x 1 r� 2 v�x�j2
avg over x� ob-
tained in local coordinate systems in which the parallel axis
is aligned with the local mean field (see [10–12]). The SF2
along the axis perpendicular to the local mean magnetic
field follows a scaling compatible with r2�3. The SF2 along
the axis parallel to the local mean field follows steeper r1

scaling. The results are compatible with the GS95 model
(rk ~ r

2�3
� , or kk ~ k

2�3
� ).
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Slow waves.—The incompressible limit of slow waves
is pseudo-Alfvén waves. Goldreich and Sridhar [24] ar-
gued that the pseudo-Alfvén waves are slaved to the shear-
Alfvén (i.e., ordinary Alfvén) waves, which means that
pseudo-Alfvén modes do not cascade energy for them-
selves (see also [16]). We confirm that similar arguments
are applicable to slow waves in low b plasmas. Energy
spectra in Fig. 2c are consistent with

Slow modes: Es�k� ~ k
25�3
� . (8)

In Fig. 2d, contours of equal second-order structure
function �SF2�, representing eddy shapes, show scale-
dependent isotropy: smaller eddies are more elongated.
The results are compatible with the GS95 model (kk ~

k
2�3
� , or rk ~ r

2�3
� , where rk and r� are the semimajor

axis and semiminor axis of eddies, respectively [10]).
From the linearized continuity equation and the induc-

tion equation, we can show that density fluctuations are
dominated by slow waves and only a small amount of mag-
netic field is produced by the slow waves in low b plasmas:
�dr�r�s � �dV �s�a � Ms, and �dB�s ! 0, as b ! 0.
Here Ms is the sonic Mach number. When Ms ¿ 1, the
above relation for density fluctuation may not give a good
approximation.

Fast waves.—Figure 2f shows fast modes are isotropic.
The resonance conditions for the interacting fast waves are
245001-3
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v1 1 v2 � v3 and k1 1 k2 � k3. Since v ~ k for the
fast modes, the resonance conditions can be met only when
all three k vectors are collinear. This means that the direc-
tion of energy cascade is radial in Fourier space. This is
very similar to acoustic turbulence, turbulence caused by
interacting sound waves [25–27]. Zakharov and Sagdeev
[27] found E�k� ~ k23�2. However, there is debate about
the exact scaling of acoustic turbulence. Here we cau-
tiously claim that our numerical results are compatible with
the Zakharov and Sagdeev scaling:

Fast modes: Ef�k� � k23�2. (9)

Non-Alfvénic magnetic field perturbations are mostly
affected by fast modes when b is small: �dB�f � �dV �f ,
which is larger than �dB�s � 0.

Turbulent cascade of fast modes is expected to be slow,
and in the absence of collisionless damping they are ex-
pected to persist in turbulent media over longer time spans
than Alfvén or slow modes. This effect is difficult to ob-
serve within numerical simulations where DB � B0.

Conclusion.—We found that, in the isothermal super-
sonic sub-Alfvénic low-b plasmas, the following scalings
are valid:

1. Alfvén: EA�k� ~ k25�3, kk ~ k
2�3
� ,

2. Slow: Es�k� ~ k25�3, kk ~ k
2�3
� ,

3. Fast: Ef�k� ~ k23�2, isotropic energy spectra.
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