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The crack of a whip is produced by a shock wave created by the supersonic motion of the tip of the
whip in the air. A simple dynamical model for the propagation and acceleration of waves in the motion
of whips is presented. The respective contributions of tension, tapering, and boundary conditions in the
acceleration of an initial impulse are studied theoretically and numerically.
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Whips are among the most misunderstood and misrep-
resented objects in today’s culture. Whips are usually
thought of either as weapons (like the ones used by Zorro
and Indiana Jones) or as instruments of torture associated
with slavery and perverse activities. The world of whips is
divided into two main categories, the “pain-making” whips
which are short, bulky, and often multithreaded (such as the
infamous cat-o’-nine-tails) and the “noise-making” whips
which are long, tapered, and single threaded (such as the
stockwhip or the bullwhip). It is the latter category which
is discussed in this Letter. Despite their frightening appear-
ance, the noise-making whips have never been seriously
used as weapons or torture devices; their only purpose is
to produce, under expert manipulation, a very distinct, loud
crack. Historically, they were primarily used to direct ani-
mals (such as horses and cattle) and secondarily used as a
means of communication. Since the introduction of cars
and the development of modern ranching in the early 20th
century, the practical use of whips has become almost ex-
tinct and the tradition of whips survives only at the hands
of fine leather craftspeople and a few whip enthusiasts for
entertainment purposes [1]. In this Letter we focus our
attention on the physical mechanism responsible for the
crack.

It is usually believed that the whip crack is a sonic boom
produced when the tip reaches supersonic speed. This ex-
planation, part of most physicist trivia questions, was first
advanced by Lumer in 1905 and substantiated by Prandtl
in 1912. The first experiment on whips was performed
by Carrière in 1927 [2]. He showed through high-speed
shadow photography that a sonic boom is associated with
the crack of the whip. Further observations were recorded
by Bernstein, Hall, and Trent in 1958 [3]. More recently,
Krehl, Engemann, and Schwenkel performed a beautiful
high-speed digital photography experiment in [4] where
accelerations of up to 50 000g were recorded (Fig. 1).
Moreover, they report a rather puzzling observation: the
sonic boom is emitted when the tip velocity reaches about
twice the speed of sound in the air.

At the theoretical level, whip dynamics is one of these
many problems of physics that we take for granted. Differ-
ent simple kinematic models [5] have been proposed, all
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based on the same central dogma of energy conservation
already put forward by Bragg in 1920 [6]: “The crack of
the whip is no doubt due to the same cause (shock wave):
a wave runs down the cord and carries energy to the lash
at the end, which is so light that it is set into most violent
motion.” More precisely, the argument goes as follows:
when the whip is made to crack, it is given an initial ve-
locity and the moving part of the whip gets localized in
an increasingly smaller section of the whip close to the
tip. If the energy is conserved, the velocity of this sec-
tion must increase. Eventually, as the length of this sec-
tion decreases to zero, the end part of the tip moves with
unbounded velocity and cracks as soon as it reaches the
velocity of the sound in the air. If the whip is tapered,
this effect should be further enhanced as the mass of the
moving part decreases even faster. However, Steiner and
Troger [7] point out that if one assumes that linear mo-
mentum is conserved rather than energy, then the tip of the
whip travels only at its initial velocity. Other authors [8]
attribute the acceleration of the tip to the conservation of
angular momentum (not unlike the acceleration given to
a golf club or the dinosaur tail when swung). The main
problem is that these models are based on kinematics; the
motion and shape of the whip is assumed and the velocity
is deduced from a given conservation principle. Not sur-
prisingly, they cannot satisfy different conservation laws

FIG. 1. High-speed digital shadowgraphs of a cracking whip
and its sonic boom. The time interval between the two pictures
is 111 ms. The solid lines are superimposed over the shock
waves. The tip velocity at the time of the crack was Mach 2.
Picture courtesy of Krehl et al. [4].
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simultaneously and do not provide insight into the shape
of the whip.

The purpose of this Letter is to reconsider the dynamics
of the whip and reconcile these seemingly contradictory
aspects such as the relationship between sonic boom and
tip velocity, the effect of tapering, the boundary conditions,
and the role of energy, linear momentum, and angular mo-
mentum. To do so, we must first understand the way whips
are made and their actual motion in the air. The first part
of the whip (the “handle” and sometimes a “swivel”) is de-
signed to facilitate the formation of the initial shape (see
below), whereas the second part, the “thong,” is a long ta-
pered filament made to carry and accelerate this shape to
a small string, the “cracker.” A well-designed thong has
very low dissipation and good whips are tested by impart-
ing a small deformation to a whip on the ground to see it
run to the end with little loss. The thong is finely cross-
braided (kangaroo leather is preferred) so that an initially
planar shape remains planar [9]. There are two principal
methods to crack a whip that can be performed in different
planes (laterally along the body, sideways, over the head,
and so on) [10]. The first one, the downward snap, consists
in moving the handle vertically as to move the entire whip
up and then suddenly move the handle down to invert the
velocity of the whip and localize the moving part to the
tip. While this is the most intuitive way to crack a whip, it
is not as efficient as the forward crack, where the handle is
moved in the air as to form an initial loop that propagates
along the whip to the end (see Fig. 1). The formation and
propagation of a traveling loop on an elastic filament is also
observed in other contexts such as the roll cast in fly-fishing
[11] or the looping of flagella in sperm motility [12].

We focus our attention on the acceleration and localiza-
tion of an initial loop in a tapered whip. In light of the pre-
vious remarks, we model the whip as a planar unshearable
and inextensible elastic rod with homogeneous density,
circular cross section of varying radius R, and linear con-
stitutive relationship. Here, we neglect the effect of gravity
(the same crack can be performed in vertical or horizon-
tal planes) and the friction of the whip in the air (crucial
to explain the creation of a sonic boom but not for the
acceleration of the loop itself). Let x�s, t� � x�s, t�ex 1

y�s, t�ey be the centerline of the rod in the x-y plane, where
s and t are arclength and time [with derivatives denoted by
� �0 and ���]. The curvature of the rod is given by k � w0,
where w is the angle between the x axis and the tangent
vector t � x0 � cos�w�ex 1 sin�w�ey. The balance of
linear and angular momenta, together with the constitutive
relationship that relates the angle w to the moment, pro-
vides a set of equations for the position of the rod �x, y�
and the force F � Fex 1 Gey [13]:

dẍ � F 0, dÿ � G0, (1)

d2ẅ � �d2w0�0 1 G cosw 2 F sinw . (2)

These equations and the variables have been rescaled so
244301-2
that force and position are dimensionless, the radius is
equal to 2 at a reference point, the speed of a sound wave
in the material is equal to 1, and d � R2�s��R2�0�. The
velocity of sound in leather is 220 m�s [14], comparable
to the propagation of sound in the air (330 m�s). The

conservation law, �H � W 0, with

H �
d

2
�d� �w2 1 w02� 1 �x2 1 �y2� ,

W � d2w0 �w 1 F �x 1 G �y ,

is associated to the energy H �
R
H ds. When the radius

is kept constant and an infinite rod is considered, these
equations support a two-parameter family of traveling
loops [15] (see Fig. 2) given by xl � s 2 2a tanh�j�a�,
and yl � 2a sech�j�a�, where j � s 2 ct. The first
interesting observation is that the velocity of a material
point at the top of the loop is exactly twice the velocity of
the loop itself (see Fig. 2). This simple general kinematic
property of traveling loops together with an analysis of
the point of origin of the shock wave in Fig. 1 suggests
a simple explanation for the experimental observation of
the tip velocity reported by Krehl et al.: the shock wave
is emitted by the loop rather than by the tip of the whip.
When the loop reaches supersonic velocity and cracks in
the air, the tip of the whip has twice the velocity of the
loop. The actual interaction of the supersonic cracker in
the air is an extremely complex phenomenon which could
be understood only by analyzing the motion of a movable
accelerating elastic boundary in a supersonic flow.

A loop of height 2a and speed c has an energy Hl and
an end tension Tl given by

Hl � 4d�d 1 dc2 1 a2c2��a , (3)

Tl � d�d 2 dc2 1 a2c2��a2. (4)

We use the solution �xl , yl� as an initial profile. The first
problem that we address is the effect of tapering on the
loop shape and velocity. One might be tempted, following
the aforementioned energy argument, to expect the loop
to accelerate on a tapering rod. However, a quick look
at (3) reveals that the energy would also be conserved if

FIG. 2. Sketch of a forward crack (drawing courtesy of Con-
way [10]). Traveling loop solution of the planar equation �xl , yl �.
The loop travels at velocity c, whereas a material point on top
of the loop moves at velocity 2c.
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the loop slows down and shrinks. Clearly, the kinematic
argument fails here. In general, one cannot assume a given
asymptotic shape for the whip and deduce its velocity.

To isolate the effect of tapering, we consider an infinite
rod with a slowly varying cross section d � d�es� with
e ø 1 and compute asymptotically [16] the change in
height and velocity of a loop of initial height and velocity
[ci � c�d � 1�, ai � a�d � 1�] by introducing the long
scales: S � es, j � 1

e

RS
0 A�s� ds 2 t. We rewrite the

conservation law �
H � W 0 in terms of the new variables

and expand it in powers of e. The compatibility condition
to first order in e yields ≠S�

R`
2` W0 dj� � 0, where W0

is the work density W evaluated on the initial loop �xl ,yl�
and expanded to order zero in e. Explicitly, it reads H �
4d
ã �d 1 dc̃2 1 ã2c̃2�, where the speed of the traveling

wave is 1�A�S� � c̃�S� 1 O �e� and its height is ã�S�.
Hence, we conclude that the relations (3) and (4) hold, in
the case when d is a function of S, and that H is constant,
to order e. This is a consequence of the fact that the energy
is conserved when the cross section varies with the length.
The analysis of (3) and (4) reveals two possible behaviors
as d ! 0: either, the loop shrinks size and the velocity is
finite or the velocity of the loop becomes unbounded and
the height finite. However, since we assume that the initial
loop is subsonic �ci ø 1� and of height larger than the
cross section �ai . 4�, the only physical solutions have
unbounded velocity as the section tapers to zero. Close
to d � 0, an asymptotic solution for the speed and height
can be found:

c �
d21�2

2ai

∑
2 1 c2

i �a2
i 2 1�

1
d

2a
2
i

�2 2 c2
i �a2

i 2 9�� 1 O�d2�
∏

,

a � ai�1 1 2c2
i � 1

2d

ai
�2c2

i 2 1� 1 O�d2� .

A typical plot of c and a as a function of the radius R
is shown in Fig. 3. The loop size remains almost constant
whereas the velocity blows up. The loop reaches super-
sonic material velocity for R�s� � R0�ai 1 O�c2
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FIG. 3. The loop speed c and height a (see inset) as a function
of the radius R [R�0� � 1, ci � 0.01, ai � 10]. The loop speed
reaches material supersonic velocity when the radius shrinks by
a factor of 10.
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The previous analysis demonstrates that tapering causes
the acceleration of a traveling loop on an infinite filament.
The velocity of the loop becomes unbounded and the height
finite. When a whip is cracked in the air, the situation
is different due to the finiteness of the filament and the
conditions at the free end. In particular, since there is no
applied tension at the free end, the assumption that the ten-
sion is constant throughout the rod is only approximately
satisfied for a short period of time when the loop is still
close to the handle. The boundary conditions at the whip
tip, s � L, are easily enforced by requiring that force and
curvature vanish identically; that is, w0�L, t� � F�L, t� �
G�L, t� � 0 for all time t. Different boundary conditions
at the handle, s � 0, can be considered. In order to ana-
lyze the role of the free end boundary conditions in the
acceleration of the initial impulse, we first use conditions
that preserve the initial energy imparted in the whip and
assume that once the loop is sent, the handle and the whip
inclination remains immobile so as not to produce any ad-
ditional work: w�0, t� � x�0, t� � y�0, t� � 0.

The numerical analysis is performed by modifying a
dedicated scheme for the dynamics of planar rods due to
Falk and Xu [17] in order to incorporate the effect of vary-
ing cross sections and free boundary conditions. The space
interval �0, L� is divided into N equally spaced mesh points
and time is discretized into steps of duration t, with tN�L
set equal to 1�2, below the limit of the classical Courant-
Friedrichs-Lewy condition for stability. The method pre-
serves a discrete version of the energy H. At each time
step, a semilinear equation for the discretized angle w is
solved iteratively and the tension at s � 0 is found. This
is the force that the hand must apply for the handle to
remain motionless. A loop solution �xl ,yl� is used as ini-
tial data with initial velocity and height �ai, ci� and initial
tension at s � 0 given by (4) with d � 1. A typical evo-
lution of the whip is shown in Fig. 4. As the loop travels
to the end of the whip, the tensionless tip is pulled by the
loop and rotates around a fixed point. The net effect of
this rotary motion is to accelerate the tip of the whip. To
identify the different mechanical contributions that cause
the loop to accelerate, we introduce the acceleration factor
g � cmax��2ci�, where cmax is the maximal velocity of a
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FIG. 4. Numerical solutions of a realistic whip (L � 2 m,
ci � 0.5, ai � L�10). (a) Initial loop; (b) whip when the tip
reaches the fastest velocity; (c) whip at time t � 0.02 s.
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FIG. 5. The acceleration factor g as a function of the tapering.

material point (g � 1 for the initial traveling loop). For a
nontapered rod, the typical effect of the free end is to ac-
celerate the tip by a factor g between 2 and 3 (see Fig. 5
at l � 0). The additional effect of tapering is to enhance
g up to 9 when the cross section tapers to l � 1�20 of its
initial area.

In actual whip cracking, additional energy is provided
throughout the entire maneuver by pulling the handle in the
opposite direction from the loop. This added tension is the
principal cause of loop acceleration in the downward snap
and is also used in the forward crack. It corresponds to
the choice of boundary conditions w�0, t� � 0, F�0, t� �
b, G�0, t� � 0. To quantify this effect, we measure g for
increasing values of b and found that g depends on b al-
most linearly. For realistic whips (L � 2 m), values of ini-
tial velocity (ci � 0.1), tension (7 kN), and tapering (l �
0.9) indicate that the tip can reach a velocity 32 times
bigger than the initial velocity of the whip, easily reaching
supersonic velocities.

Anyone who picks up a whip knows that making it crack
requires skill, practice, and dexterity and that mishandling
can result in painful experiences. At the physical level,
the dangers of mishandling the problem are not as drastic
but a simplistic approach based on a single conservation
principle fails to provide insight on a beautiful phenome-
non. Clearly, the acceleration of an initial impulse on an
elastic rod is not easy to achieve and requires the subtle
combination of different effects: the formation of an ini-
tial traveling loop, the free-end boundary conditions, the
tapering, and the added tension.
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