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We present a highly sensitive nonlinear optical technique to measure optical retardation. The technique
is based on second-harmonic generation from thin films using two beams at the fundamental frequency.
The sensitive polarization dependence of the process allows measuring optical retardation very precisely.
The technique relies on fundamental symmetry principles and does therefore not require complicated
experimental arrangement or data analysis. The technique was demonstrated by determining the retarda-
tion of a nominal half-wave plate to a precision and repeatability better than l�104.
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Polarization is a very fundamental property of light,
necessary to account for the vectorial character of electro-
magnetic waves. Many processes in optics depend on the
polarization states of the beams involved [1]. In addition,
polarization mode dispersion seems to be the ultimate fac-
tor limiting the maximum data transmission rate in modern
optical fibers [2]. Besides optics, the study of polarization
is important in many other fields, such as astronomy, chem-
istry, biology, and remote sensing.

Certain optical quantities can be determined very accu-
rately. The frequency of light, for instance, can soon be
measured to a few parts in 1016 [3]. On the other hand,
it is very difficult to measure precisely the polarization
state of light. The most general polarization state is rep-
resented by elliptical polarization. The shape (ellipticity),
the orientation (azimuth), and the handedness of the polari-
zation ellipse can be determined if the relative amplitudes
of two arbitrary orthogonal polarization components and
their phase difference (retardation) are known, and vice
versa [4]. Existing ellipsometric techniques allow deter-
mining the azimuth of the polarization ellipse to a precision
of 1026 rad [5]. The retardation induced by active com-
ponents on a light beam can be measured to a precision
on the order of l�108 using, for example, an intracavity
polarimeter [6] or optical heterodyne techniques [7]. A
similar precision in retardation measurements of passive
components, however, has been reached only for very par-
ticular cases, e.g., for supermirrors with ultralow birefrin-
gence [8]. It is therefore still a challenge to measure the
retardation of common birefringent elements or the ellip-
ticity of an arbitrary beam to a high degree of accuracy.

The difficulties in accurate retardation measurements
are evident, for example, in the characterization of com-
mon wave plates, which are key components in applica-
tions where control and analysis of the polarization state
of light are required. The most precise ellipsometric tech-
niques used nowadays in the industry allow measuring the
retardation of wave plates only to l�1000 [9]. Alternative
measurement techniques have reached a maximum preci-
sion of l�7000 [10–13], but at the expense of complicated
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experimental setups and data analysis. A recent technique
based on polarization modulation quotes a sensitivity on
the order of l�105 for small values of retardation [14,15].
A common feature of these and other techniques is that
they require a careful alignment of several polarization
components. This often leads to hampering factors such
as varying retardation offsets that considerably lower the
precision and repeatability of the techniques. It is therefore
evident that any real advances in retardation measurements
must be based on novel physical principles rather than im-
proved instrumentation and data analysis.

We present a completely new technique for retardation
measurements that has the potential of being superior to
existing techniques in several important aspects. The tech-
nique is based on second-harmonic generation from thin
films using two input beams at the fundamental frequency.
The technique relies on fundamental symmetry properties
of the nonlinear interactions and does not require sophisti-
cated experimental arrangement or data analysis to achieve
a high precision. In our initial demonstration of the tech-
nique using a relatively simple setup, we have already
achieved a precision of l�104. In addition, the technique
does not rely on extremely careful alignment of the optical
elements or of the beams involved.

We consider the geometry of Fig. 1. Two beams at
the fundamental frequency v and on the same plane of
incidence are applied on a poled thin film with in-plane
isotropy. The polarization state of the target beam (wave
vector k1) is to be determined. To measure the phase
shift (retardation) between two orthogonal components of
the target polarization vector, a probe beam (wave vector
k2) with a controllable polarization is used. Since we are
interested in processes to which both the target and the
probe beams contribute, coherent second-harmonic light is
detected in the approximate direction k1 1 k2 [16].

An arbitrary elliptical target polarization can be
described as a sum of linear and circular polarization com-
ponents. The circular component is known to break the
symmetry of the setup and to result in a different response
of second-harmonic generation to left- and right-hand
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FIG. 1. Geometry of nonlinear retardation measurements. Two
beams (target and probe) at the fundamental frequency v and
on the same plan of incidence intersect in a poled thin film. The
intensity of the produced second-harmonic signal is measured.

circularly polarized probe beams [17]. This effect can be
quantified by the normalized circular-difference response
in the second-harmonic signal intensity,

DI
I

�
Ileft 2 Iright

�Ileft 1 Iright��2
, (1)

where the subscripts refer to circular probe polarizations.
This difference effect can be interpreted in terms of op-
tical activity arising from the broken reflection symmetry
of the experiment due to the circular target polarization.
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From another point of view, the effect arises from inter-
ference between the real and the imaginary parts of the
vector describing the polarization state of the target beam
[17]. The circular-difference response depends sensitively
on the retardation of the target beam, and therefore allows
determining the retardation to a high degree of accuracy.

We consider a coordinate system where z is along the
sample surface normal, and x and y are the in-plane coor-
dinates. More specifically, y is in the s-polarized direction
(normal to the plane of incidence), whereas both x and z
contribute to the p polarization (in the plane of incidence).
For achiral isotopic films (symmetry C`n), the second-
harmonic susceptibility tensor x

�2�
ijk has the nonvanishing

components ijk: zzz, zxx � zyy, xxz � xzx � yyz �
yzy. The structure of the tensor implies that the p and s
components of the second-harmonic field are, respectively,
of the general forms [17]

Ep�2v� � fpE1p �v�E2p�v� 1 gpE1s�v�E2s�v� ,

Es�2v� � fsE1p�v�E2s�v� 1 gsE1s�v�E2p�v� ,
(2)

where the subscripts 1 and 2 refer to the target and probe
beams, respectively. The expansion coefficients fi and gi

are linear combinations of the components of x
�2�
ijk and

depend on the geometry of the experiment. For the two
circular probe polarizations �E2s�v� � 6iE2p�v��, the
intensities of the p and s components of the second-
harmonic field are then proportional to
jEp�2v�j2 � �jfpj
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(3)
In general, the expansion coefficients fi and gi are com-
plex numbers. For molecules with a strong nonlinearity
along a single charge transfer axis, only the component
b333 of the hyperpolarizability tensor along this axis is
sufficient to describe the nonlinearity [18]. As a conse-
quence, the nonvanishing components of the macroscopic
susceptibility x

�2�
ijk are zxx � zyy � xxz � xzx � yyz �

yzy � zzz�r, where r is the poling ratio [18]. All coef-
ficients fi and gi then depend on the same susceptibility
tensor component, and no phase shift between them should
occur. For our sample, the absence of a phase shift be-
tween the expansion coefficients was verified experimen-
tally. Equations (3) then show that the only possible source
of a circular-difference response is a retardation between
the polarization components of the target beam.

If the symmetry of the sample is lower than C`n,
Eqs. (2) must be modified accordingly. In the most
general case, each component of the second-harmonic
field is specified by a set of four expansion coefficients.
However, this has no influence on the reliability of the
technique. In fact, even in this general case, once phase
shifts between the expansion coefficients are excluded, a
circular-difference response can arise only from a phase
shift between the polarization components of the target
beam.

We demonstrated the potential of our technique by deter-
mining the retardation of a compound zero-order half-wave
plate. The wave plate was placed in the target beam, which
was initially p polarized. The fast axis of the wave plate
(retardation d) was rotated by 45± from the p direction,
and the polarization components of the target beam after
the wave plate can be written as [19]

E1p�v� � i cos�d�2�E10�v� ,

E1s�v� � sin�d�2�E10�v� ,
(4)

where E10�v� is the field amplitude of the target beam
before the wave plate.

For the two circular probe polarizations, the in-
tensities of the p and s components of the second-
harmonic field are then proportional to
jEp�2v�j2 � jfp cos�d�2� 6 gp sin�d�2�j2jE2p�v�j2jE10�v�j2,

jEs�2v�j2 � jfs cos�d�2� 7 gs sin�d�2�j2jE2p�v�j2jE10�v�j2.
(5)
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Equations (5) show that any retardation d different from
mp (m integer) results in a different response to left- and
right-hand circular probe polarizations, unless one of the
expansion coefficients fi and gi in each equation vanishes.
In our experiment, a nominal half-wave plate was used.
A deviation of the actual wave plate retardation from l�2
�d � p� introduces a small circular component in the
target polarization and therefore results in a circular-
difference response.

A computer simulation was used to optimize the ex-
perimental geometry by assuming the ideal poling ratio
r � 3 for the polymer film [18]. In addition, unpolar-
ized detection of second-harmonic radiation was assumed
in order to avoid any artificial circular-difference effects
due to a possible misalignment of the analyzing polarizer
[20]. For small incidence angles of the probe beam, the
circular-difference response is large but the absolute inten-
sity level of the signal decreases. The chosen geometry
(internal incidence angles of 24± and 4.5± for the target
and probe beams, respectively) results from a trade-off be-
tween these two effects. In this geometry, the magnitude of
the circular-difference response [Eq. (1)] was calculated to
be about 4% for a retardation error of l�1000 of the target
half-wave plate. The assumption of a poling ratio equal to
3 was waived in the theoretical model used to describe the
retardation measurements, since the actual poling ratio can
differ somewhat from this value.

Our sample was a spin-coated achiral thin film of the
nonlinear polymer A-095.11 (Sandoz). Poling of the
sample results in C`n symmetry. The thickness of
the sample was 250 nm and its absorption maximum
occurs at 502 nm.

A beam of an infrared Nd:YAG laser (1064 nm,
�5 mJ, 10 ns pulse length, 30 Hz repetition rate) was
split into two beams of nearly the same intensity. To
account for the refractive index of the polymer (1.676 at
1064 nm), the target and probe beams were applied on
the sample at external angles of incidence of 43± and 7.5±,
respectively. For accurate polarization control, the beams
were initially p polarized with respect to the sample using
calcite Glan polarizers (extinction ratio �1:250 000)
[21]. The zero-order half-wave plate to be tested was
placed in the target beam with the fast axis oriented at
45± with respect to the p direction. A zero-order quar-
ter-wave plate was used to manipulate the polarization
of the probe beam and to access its circular polarization
states.

To determine the circular-difference response and the
retardation of the target wave plate as accurately as pos-
sible, the second-harmonic signal (532 nm) was recorded
continuously as the probe quarter-wave plate was rotated
(Fig. 2) and fitted with a theoretical model. The quality
of the fit depends on the accuracy of the expansion co-
efficients fi and gi. To avoid any problems in the un-
certainty of experimental parameters needed to calculate
these coefficients theoretically, we determined the coeffi-
cients experimentally for the very geometry used in the
243901-3
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FIG. 2. Second-harmonic generation (SHG) signal as a func-
tion of the rotation angle of the probe quarter-wave plate (QWP).
The angles of 245± and 145± correspond to left- (LHC) and
right-hand (RHC) circularly polarized probe beams, respectively.
The determined target retardation was 178.45 6 0.03±.

subsequent retardation measurements. In addition, suffi-
cient polarization purity of the setup was verified using
s and p linearly polarized target beams: The efficiency
of second-harmonic generation was always measured to
be independent of the sense of circular polarization of the
probe beam, within the accuracy of the technique. A typi-
cal polarization line shape and its fit are shown in Fig. 2.
The fit yields the retardation of the target wave plate with a
precision higher than l�104. All measurements performed
were in agreement with C`n symmetry of the sample and
showed that no phase shifts occur between the expansion
coefficients.

The retardation of the zero-order half-wave plate was
varied by tilting it about its fast axis (Fig. 3). When the
difference Dn between extraordinary and ordinary refrac-
tive indices of the wave plate and the tilt angle w are small,
the retardation can be expressed as [22]

tilt angle of target wave plate (degrees)
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FIG. 3. Retardation of the zero-order half-wave plate as a func-
tion of its tilt angle. For comparison, a bar corresponding to a
retardation of l�500 is indicated.
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d � d0 2 pDnw2d�l , (6)

where d0 is the retardation with the beam at normal in-
cidence, d is the total thickness of the wave plate, and l

is the wavelength of light. The solid line in Fig. 3 is ob-
tained by fitting the measured data to the model of Eq. (6),
which yields the expected thickness �d � 1 mm� for the
wave plate. The precision of each experimental retarda-
tion measurement was about l�104, which is smaller than
the size of the data points in Fig. 3. The deviation of some
experimental points from the theoretical fit, however, is
larger than this value. This is most likely due to the in-
homogeneity of the wave plate [14]. If the beam is not
exactly centered on the pivot point of the holder, the beam
will pass through a slightly different spot on the wave plate
when it is tilted. The repeatability of the technique was
also measured to be at least l�104.

The precision and repeatability of retardation measure-
ments were lower when a multiorder half-wave plate was
tested. This is most likely due to the high sensitivity of
multiorder wave plates to temperature variations of the en-
vironment compared to zero-order wave plates [22]. For
example, a temperature change on the order of 0.05 ±C is
sufficient to cause a retardation change of l�104 in typical
multiorder half-wave plates [22].

We performed a detailed analysis of the sensitivity of
the technique to various sources of errors. The technique
is remarkably insensitive to misalignments of the beams
and of the optical components, as well as to errors in the
retardation of the probe quarter-wave plate. The physical
reason for this is the fact that the circular-difference re-
sponse arises directly from interference between the real
and imaginary parts of the polarization vectors of the fun-
damental beams. Misalignments of the optical components
and of the fundamental beams do not introduce any ad-
ditional imaginary component in their polarization states.
Clearly, the quality of the wave plate used in the probe
beam influences its polarization state. However, the (near)
circular probe polarizations are mainly used to detect the
presence of an imaginary part in the target polarization.
Therefore, small deviations of the quarter-wave plate re-
tardation from d � p�2 can be tolerated without signifi-
cantly affecting the precision of the technique.

The values for the target retardation obtained when al-
lowing reasonable deviations of the above parameters from
the ideal values are well within the precision of the tech-
niques. As an example, a deviation of l�1000 from an
ideal probe quarter-wave plate would lead only to an error
on the order of l�40 000 in the determination of the target
retardation for the retardation range investigated.

In the initial demonstration of the technique, we investi-
gated the special case of a target half-wave plate (retarda-
tion d � p). We have also found that the extension of the
technique to small values of retardation (around d � 0) is
straightforward. This opens up a vast field of possible ap-
plications in the study of low-level residual birefringence
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in optical components [14]. We are also investigating ways
to extend the technique to measure arbitrary values of re-
tardation with the same precision.

In conclusion, we have demonstrated a highly sensitive
nonlinear optical technique for retardation measurements.
The technique relies on fundamental symmetry properties
of nonlinear interactions and does therefore not require
sophisticated experimental arrangement or data analysis to
achieve a high precision. In the initial demonstration of the
technique using a simple experimental setup, we already
achieved a precision and repeatability better than l�104.
We believe that these values can be further improved by
future refinements in the experimental details.

S. C. acknowledges support by the Centre for Interna-
tional Mobility and the Graduate School of Modern Optics
and Photonics in Finland.

*Email address: stefano.cattaneo@tut.fi
[1] See, for example, S. Huard and G. Vacca, Polarization of

Light (Wiley, New York, 1997).
[2] See, for example, J. Hecht, Understanding Fiber Optics

(Prentice-Hall, New York, 1999).
[3] R. Holzwarth, Th. Udem, and T. W. Hänsch, Phys. Rev.

Lett. 85, 2264 (2000).
[4] M. Born and E. Wolf, Principles of Optics (Pergamon

Press, Oxford, 1980).
[5] See, for example, A. R. Bungay, S. V. Popov, and N. I.

Zheludev, Opt. Lett. 20, 356 (1995).
[6] S. C. Read et al., J. Opt. Soc. Am. B 5, 1832 (1988).
[7] F. Brandi, E. Polacco, and G. Ruoso, Meas. Sci. Technol.

12, 1503 (2001).
[8] J. Y. Lee et al., Appl. Opt. 39, 1941 (2000).
[9] Meadowlark Optics, Polarization Handbook, 1998–2001.

[10] L. Yao, Z. Zhiyao, and W. Runwen, Opt. Lett. 13, 553
(1988).

[11] S. Nakadate, Appl. Opt. 29, 242 (1990).
[12] K. B. Rochford and C. M. Wang, Appl. Opt. 36, 6473

(1997).
[13] Y. Zhang et al., Opt. Eng. 40, 1071 (2001).
[14] B. Wang and T. C. Oakberg, Rev. Sci. Instrum. 70, 3847

(1999).
[15] B. Wang and W. Hallman, Rev. Sci. Instrum. 72, 4066

(2001).
[16] Y. R. Shen, The Principles of Nonlinear Optics (Wiley,

New York, 1984).
[17] T. Verbiest, M. Kauranen, and André Persoons, Phys. Rev.

Lett. 82, 3601 (1999).
[18] Ch. Bosshard et al., Organic Nonlinear Optical Materials

(Gordon and Breach, Basel, 1995).
[19] R. M. A. Azzam and N. M. Bashara, Ellipsometry and Po-

larized Light (North-Holland, Amsterdam, 1989), p. 488.
[20] R. Stolle, M. Loddoch, and G. Marowsky, Nonlinear Opt.

8, 79 (1994).
[21] The technique is not sensitive to any residual depolariza-

tion of the beams. In the unpolarized component, right-
and left-hand circular polarizations, which lead to opposite
circular-difference effects, are equally present.

[22] P. D. Hale and G. W. Day, Appl. Opt. 27, 5146 (1988).
243901-4


