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Coherent Atom Interactions Mediated by Dark-State Polaritons
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We suggest a technique to induce effective, controllable interactions between atoms that is based on
Raman scattering into an optical mode propagating with a slow group velocity. The resulting excitation
corresponds to the creation of spin-flipped atomic pairs in a way that is analogous to correlated photon
emission in optical parametric amplification. The technique can be used for fast generation of entangled
atomic ensembles, spin squeezing, and applications in quantum information processing.
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The intriguing possibility for controlled manipulation of
interacting quantum systems is the basis for a number of
exciting developments in the field of quantum information
science [1]. These are expected to have an impact in a
broad area ranging from quantum computation and quan-
tum communication [2] to precision measurements [3] and
controlled modeling of complex quantum phenomena [4].

This Letter describes a new technique to induce effective
coherent interactions between atoms in metastable states.
The technique is based on a resonantly enhanced nonlinear
process involving Raman scattering into a “slow” optical
mode [5], which creates a pair of spin-flipped atoms and
slowly propagating coupled excitation of light and matter
(dark-state polariton). When the group velocity of the
polariton is reduced to zero [6,7], this results in pairs of
spin-flipped atoms.

The present phenomenon of spin pair creation exhibits
strong similarities with optical parametric amplification
(OPA), in which pairs of photons are generated that pos-
sess nonclassical correlations in photon number, quadra-
ture component fluctuations, or polarization states [8]. In
direct analogy, the present technique is capable of gener-
ating nonclassically correlated atomic ensembles and en-
tangled spin excitations. The latter can easily be converted
into corresponding states of photon wave packets “on de-
mand,” which makes the present approach most suitable
for implementing protocols in quantum information pro-
cessing that require a combination of deterministic sources
of entangled states and long-lived quantum memory [9,10].

The present technique can also be viewed as a new
mechanism for coherent “collisions” [11] between atoms
mediated by light. In particular, the case when atomic pairs
are excited into two different levels (as, e.g., in Fig. 1a)
closely resembles coherent spin-changing interactions that
occur in degenerate atomic samples [12], whereas the
case when atomic pairs are stimulated into identical states
(Fig. 1b) is reminiscent of dissociation of a molecular con-
densate [13]. To put this analogy in perspective we note
that the rate of the present optically induced process can
exceed that of weak interatomic interactions by orders of
magnitude. Therefore the present work may open up inter-
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esting new possibilities for studying many-body phenom-
ena of strongly interacting atoms.

Before proceeding we note that a number of proposals
have been made for generating entangled states of atomic
ensembles. Some are based on interatomic interactions at
ultracold temperatures [14], whereas others involve map-
ping the states of nonclassical light fields into atoms [15],
quantum nondemolition measurements of spins [16] with
light, and Rydberg blockade [17]. Also note the recent ex-
periments on number-phase squeezed states and the Mott
insulator phase in Bose-Einstein condensation [18]. In
contrast to these mechanisms the present approach does not
require coherence of the atomic motion or sources of non-
classical light and is completely deterministic thereby sig-
nificantly simplifying possible experimental realizations.
We further show that the present technique can be made
robust with respect to realistic decoherence processes such
as spontaneous emission and leakage of slow photons from
the medium. Note that the present mechanism does not
rely on so-called “photon exchange” interactions discussed
by Franson et al. [19,20].

We consider a system of N atoms (Fig. 1) interacting
with two classical driving fields and one quantized mode
that is initially in a vacuum state. Relevant atomic sub-
levels include two manifolds of metastable states (e.g., hy-
perfine sublevels of electronic ground state) and excited
states that might be accessed by optical transitions. The
atoms are initially prepared in their ground states jg�. One
of the classical fields (Rabi frequency V1) is detuned from
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FIG. 1. Level scheme for the coherent interaction leading to
pairs of atoms in (a) different final states jb2� and jb1�, (b) the
same final state jb�.
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the atomic resonance by an amount roughly equal to the
frequency splitting between ground state manifolds. The
other (Rabi frequency V2) is resonant with an atomic tran-
sition jb2� ! ja2�. The quantized field can be involved
in two Raman transitions corresponding to Stokes and
anti-Stokes processes. Whereas the former corresponds
to the usual Stokes scattering in the forward direction,
the latter establishes an electromagnetically induced trans-
parency (EIT) and slows down its group velocity. The
pair excitation can be viewed as resulting from quantized
photon exchange between atoms (Fig. 2) in a two-step pro-
cess. The first flipped spin is created due to Stokes Raman
scattering, which also results in photon emission in a corre-
sponding Stokes mode. In the presence of EIT, this photon
is directly converted into a dark-state polariton which be-
comes purely atomic when the group velocity is reduced
to zero. This implies that atomic spins are always flipped
in pairs.

In what follows we focus on a system (Fig. 1a) involv-
ing two atomic modes. Consideration of the scheme of
Fig. 1b proceeds along the same lines. For conceptual sim-
plicity we here assume that the quantized field corresponds
to a single mode of a running-wave cavity with a creation
operator ây and atom-field coupling constants g1 and g2.
Generalization to multimode, i.e., traveling wave configu-
ration is straightforward. The interaction Hamiltonian for
the system of N atoms and light can be split into two parts
H � Hram 1 Hres, which are given by

Hram � 2h̄DSa1a1 2 h̄d1Sb1b1

1 �h̄V1Sga1 1 h̄g1aySb1a1 1 H.c.� , (1)

Hres � h̄d2Sb2b2 1 h̄d2Sa2a2

1 �h̄g2aySga2 1 h̄V2Sb2a2 1 H.c.� , (2)

where Smn �
P

i jm�ii�nj are collective atomic operators
corresponding to transitions between atomic states jm�, jn�
and D, d1, and d2 are single and two-photon detunings as
in Fig. 1.

In the limit of large detuning D and ignoring two-photon
detunings for the moment, the Hamiltonian Hram describes
an off-resonant Raman scattering. After a canonical trans-
formation corresponding to adiabatic elimination of the ex-
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FIG. 2. Diagram illustrating coherent atom-atom interaction
mediated by a dark-state polariton, leading to the creation of
a pair of spin-flipped atoms.
243602-2
cited state Hram becomes equivalent to

Hram � h̄
p

N
g�

1V1

D
aS1 1 H.c. , (3)

where we disregarded the light shift dL � jV1j
2�D and

introduced S1 � 1�
p

N Sgb1
. Light shifts can be easily

compensated by redefining the energy of atomic levels and
will be disregarded in the remainder of this Letter. The
resonant part of the Hamiltonian Hres is best analyzed in
terms of dark- and bright-state polaritons [21]

PD �
V2a 2 g2

p
N S2p

jg2j
2N 1 jV2j

2
,

PB �
g2
p

N a 1 V2S2p
jg2j

2N 1 jV2j
2

,

(4)

which are superpositions of photonic and atomic excita-
tions, with S2 � 1�

p
N Sgb2 . In particular, Hres has an

important family of dark states:

jDn� � �Py
D�njg� jvac� (5)

with zero eigenenergies. Note that all other eigenstates of
Hres have, in general, nonvanishing interaction energy. Un-
der conditions of Raman resonance and sufficiently slow
excitation (“adiabatic condition”) the Stokes photons emit-
ted by Raman scattering, Eq. (3), will therefore couple
solely to the dark states (5). In this case the evolution of
the entire system is described by an effective Hamiltonian:

Heff � h̄j�PDS1 1 S
y
1 P

y
D� , (6)

with j � V1V
�
2�D 3 g�

1

p
N�

p
jg2j

2N 1 jV2j
2. The

Hamiltonian (6) describes coherent generation of pairs
of excitations involving polaritons PD and spin-flipped
atoms S1. It is analogous to the “countertwisting” model
of Ref. [22] which is known to result in maximal spin
squeezing. Note that for a small number of excitations
the spin waves and polaritons obey bosonic commutation
relations and the Hamiltonian (6) is formally equivalent
to that describing OPA [8].

We now consider the scenario in which the system is
evolving for a time t under the Hamiltonian Heff, after
which both fields are turned off. If the procedure is adia-
batic upon turn-off of the coupling fields V1,2, the po-
laritons are converted into pure spin excitations PD ! S2.
Hence the entire procedure will correspond to the follow-
ing state of the system:

jC� �
1

coshjt

X
n

�tanhjt�n 1
n!

�Py
D�n�Sy

1 �njg� jvac�

!
1

coshjt

X
n

�tanhjt�njnb1 , nb2 � jvac� . (7)

Here jnb1 , nb2 � � 1�n! �Sy
2 �n�Sy

1 �njg� are Dicke-like sym-
metric states of atomic ensemble and we assumed nb1,b2

ø

N . This entangled state possesses nonclassical properties
such as reduced fluctuations as compared to a state repre-
senting uncorrelated atoms.
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The above analysis includes only the interaction with
a single (forward-propagating) quantized radiation mode
and neglects decoherence processes. We now take into
account realistic decoherence mechanisms such as spon-
taneous emission from the excited states in all directions
and decay of the cavity mode with a rate k. The evolu-
tion of atomic operators is then described by Heisenberg-
Langevin equations:

�Smn � 2gmnSmn 1
i
h̄

�H, Smn� 1 Fmn , (8)

where gmn is a decay rate of coherence m ! n and Fmn

are associated noise forces. The latter have zero average
and are d correlated with associated diffusion coefficients
that can be found using the Einstein relations.

We proceed by adiabatic elimination of optical polar-
izations associated with Stokes emission. To this end we
assume large single-photon detuning D ¿ g and to first
order in â we obtain the following equations of motion for
the metastable coherences:

�S
y
1 � 2�ḡgb 1 id1�Sy

1 1 i
g�

1

p
N V1

D
a 1 F̄

y
S1

�t� ,

�S2 � 2�ḡgb 1 id2�S2 2 i�V2�
p

N �Sga2 1 F̄S2�t� ,
(9)

where ḡgb � ggb 1 gL, ggb is the ground state relaxation
rate, and gL � gagjV1j

2�D2 is the optical pumping rate.
To treat the resonant EIT-like interaction we first rewrite

the equations of motion in terms of the dark- and bright-
polariton operators (4) and proceed to adiabatically
eliminate the optical coherence Sga2 and the bright-state
polariton PB. In the relevant limit when jg2j

2N�gagk ¿

1 and when h 	 jg2j
2N�jV2j

2 the ratio of vacuum light
velocity to group velocity is large (h ¿ 1), we find

�PD � 2�k�h 1 ḡgb 1 id2�PD 1 ijS
y
1 1 F̃D�t� ,

�S
y
1 �

∑
jg1j

2

jg2j2
gL 2 ḡgb 2 id1

∏
S
y
1 (10)

2 ijPD 1 F̃
y
S1

�t� .

We note that cavity losses are strongly suppressed in
the limit h ¿ 1: subsequent to the large group velocity
reduction [5], the polariton is almost purely atomic and
the excitation leaks very slowly out of the medium.

The equation of motion for the coherence S
y
1 contains

a loss term (due to isotropic spontaneous emission) and a
linear gain term (due to emission into a bright polariton)
that can compensate each other. However, the linear
phase-insensitive amplification is also accompanied by
correspondingly increased fluctuations, represented by
new Langevin forces F̃D�t�, F̃

y
S1

�t�.
To quantify the resulting quantum correlations we intro-

duce a measure of squeezing in direct analogy to the OPA
case: the quadratures are defined as X1 � �S1 1 S

y
1 ��

p
2,
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Y1 � i�S1 2 S
y
1 ��

p
2. Dynamical evolution leads to the

creation of correlated atomic modes and reduced fluctua-
tions in the quadratures of the sum and difference modes
X6 � �X1 6 XD��

p
2 and Y6 � �Y1 6 YD�

p
2, and for

a small number of excitations these obey standard com-
mutation relations. With the phases of the Rabi frequen-
cies V1,2 appropriately chosen, the quadrature Y1 becomes
squeezed, i.e., DY1�t�2 # 1�2. To detect the resulting cor-
relations established among atoms, the atomic excitations
can be converted to photons [6]: in the nondegenerate case
(Fig. 1a) twin beams/photons are generated (i.e., two light
modes strongly correlated in one quadrature and anticor-
related in the other quadrature) and in the degenerate case
a squeezed beam is produced (i.e., one mode with reduced
fluctuations in one quadrature and increased fluctuations in
the other). For a review of experimental detection of such
states, see [23].

We find that squeezing is optimal under conditions of
four-photon resonance (d1 � d2) and in the limit of h ¿

1 (Fig. 3). Note that the number of excitations grows
exponentially with time (Fig. 3c). Specifically, in the case
g1 � g2, for jt . 1, we have

�DY1�t��2 � 1�2

Ω
e22jt 1

2k�h 1 5gL 1 4ggb

4j

1

µ
k�h 1 gL

4j

∂2

e2jt

æ
, (11)

where we have neglected terms of higher order in gL�j

and k�j. The maximum amount of squeezing is ob-
tained after an interaction time t� such that e22jt�

�
�gL 1 k�h��4j and is given by DY2

1 � �4k�h 1 7gL 1

4ggb ��8j. Since both the interaction parameter j and the
relaxation rate of the polariton gD � gL 1 k�h depend
on the single photon detuning D (Fig. 3a), we find that
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FIG. 3. (a) Quadrature variance DY 2
1 vs single-photon de-

tuning D and interaction time jt, (b) same for D � Dopt

and d1 � d2 showing maximum squeezing DY2
1 
 0.02 (forp

jg2j
2N�gagk � 100), (c) number of excitations pumped in

the system vs time [same conditions as in (b)], and (d) DY1�t��2

vs two-photon detuning d̄ 	 �d1 2 d2��2 for D � Dopt and
where t� gives maximum squeezing.
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squeezing is optimized for the single-photon detuning

Dopt � gag

q
7jV1j2

4jV2j2
jg2j2N
gagk �

q
1 1 ggbh�k, and

DY 2
1 �

s
gagk

jg2j2N

s
7
4

µ
1 1

ggb

k�h

∂
. (12)

The factor jg2j
2N�kg is equal to the atomic den-

sity-length product multiplied by an empty cavity finesse
and can easily exceed 104 even for modest values of the
density-length product and cavity finesse. The coefficient
ggbh�k is small as long as the effective group delay h�k

is smaller than the ground state relaxation time 1�ggb ,
which is easily achievable. Note that the strong coupling
regime of cavity QED g * kg is not required to achieve
strong correlations; in fact, as long as g2N * kg squeez-
ing is achieved. Furthermore, although a cavity configu-
ration was used for simplicity, the results of the present
analysis remain qualitatively valid in the limit of unity
finesse, i.e., free space. We consider a possible imple-
mentation of our “degenerate” scheme (Fig. 1b): levels
jg� and jb� correspond to the 52S1�2, F � 1, mF � 1
and 52S1�2, F � 2, mF � 1 levels in 87Rb (i.e., D1 line)
and level ja� to the 52P1�2, F � 2, mF � 2 level. With
all fields s1 polarized and atoms prepared in state
52S1�2, F � 1, mF � 1 by optical pumping or magnetic
state selection in atom traps, this implements the scheme
of Fig. 1b. For these conditions the typical generation
rate resulting in optimal squeezing V1V2�Dopt can easily
be on the order of a fraction of MHz. In such a case
other decoherence mechanisms are negligible. Doppler
shifts can also be disregarded as long as all fields are
copropagating.

To summarize, we have presented a scheme based on
the interaction of coherent classical light with an optically
dense ensemble of atoms that leads to effective coherent
spin-changing interactions involving pairs of atoms. We
have shown that this process is robust with respect to real-
istic decoherence mechanisms and can result in rapid gen-
eration of correlated (spin squeezed) atomic ensembles.
Furthermore, the resulting spin excitations can be easily
converted into photons on demand, which facilitates appli-
cations in quantum information processing. Possible appli-
cations involving high-precision measurements in atomic
clocks can also be foreseen. We further note that exten-
sion of this work into the domain of very large atomic
density-length product or high-finesse cavities might allow
one to create maximally spin-squeezed states or macro-
scopic quantum superpositions (“Schrodinger cat” states).
This in turn might allow one to observe interaction-induced
quantum phase transitions [24].
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