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Estimate of the Cosmological Bispectrum from the MAXIMA-1
Cosmic Microwave Background Map
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We use the measurement of the cosmic microwave background taken during the MAXIMA-1 flight to
estimate the bispectrum of cosmological perturbations. We propose an estimator for the bispectrum that
is appropriate in the flat sky approximation, apply it to the MAXIMA-1 data, and evaluate errors using
bootstrap methods. We compare the estimated value with what would be expected if the sky signal were
Gaussian and find that it is indeed consistent, with a x2 per degree of freedom of approximately unity.
This measurement places constraints on models of inflation.
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Introduction.—All theories of structure formation in the
universe predict the properties of the probability distribu-
tion function (PDF) of cosmological perturbations. In all
cases of interest, the PDF can be completely described in
terms of its spatial n-point correlation functions, which are
the expectation values of all possible products of the ran-
dom field with itself at different points in space. Under
the assumption of statistical isotropy and homogeneity, it
is normally more useful to characterize the PDF in terms of
higher order moments of the Fourier transform of the field.
Most readers are familiar with the two-point moment, the
power spectrum of fluctuations (C�). Indeed current efforts
in the analysis of cosmic microwave background (CMB)
data have focused mainly on increasingly precise estimates
of the angular power spectrum. The theoretical bias for this
is clear: For inflation induced perturbations, which is the
current favorite model of structure formation, the statistics
are Gaussian and all nonzero moments of order n . 2 can
be expressed in terms of the C�.

In this Letter, we present the first estimate of the bispec-
trum of the CMB on degree, and subdegree, angular scales.
The bispectrum is the cubic moment of the Fourier trans-
form of the temperature field, and it can be seen as a scale
dependent decomposition of the skewness of the fluctua-
tions (in much the same way as the C� is a scale dependent
decomposition of the variance of fluctuations). The bispec-
trum can be used to look for the presence of a non-Gaussian
signal in the CMB sky. We use the data collected with the
MAXIMA-1 experiment [1] to quantify the bispectrum of
the CMB. The Gaussianity of this data set has already been
analyzed using complementary methods in [2], including
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the methods of moments, cumulants, the Kolmogorov test,
the x2 test, and Minkowski functionals in eigen, real,
Wiener-filtered, and signal-whitened spaces.

In the past few years, interest in the bispectrum has
grown in the scientific community. Estimates of the bispec-
trum in the COBE data proved the statistic to be extremely
sensitive to some non-Gaussian features in the data, be they
cosmological or systematic [3]; the quality of galaxy sur-
veys has made it possible to test for the hypothesis that the
matter overdensity is a result of nonlinear gravitational col-
lapse of Gaussian initial conditions [4]. On the other hand,
a serious effort has been undertaken to calculate the ex-
pected bispectrum from various cosmological effects; sec-
ondary anisotropies (such as the Ostriker-Vishniac effect,
lensing, Sunyaev-Zel’dovich effect) [5], as well as primor-
dial sources (such as nonlinear corrections to inflationary
perturbations or cosmic seeds) may lead to observable sig-
natures in the bispectrum of the CMB [6–9].

Let us establish some notation. We shall be working
in the small sky approximation where a map of the CMB
can be considered approximately flat [10]. The anisotropy
of the CMB, DT�x�, can then be expanded in terms of
two-dimensional Fourier modes as follows:

DT�x� �
Z d2k

�2p�2
a�k�eik?x. (1)

As stated above, the complete statistical properties of DT
can be encoded in the expectation values of products of the
a�k�. The power spectrum is defined to be �a�k�a�k0�� �
�2p�2C�k�d2�k 1 k0�. On small angular scales, the cor-
respondence between the flat sky power spectrum and
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the full sky angular power spectum is straightforward:
C� � C�k�jk��. The bispectrum is defined to be

�a�k1�a�k2�a�k3�� ��2p�2B�k1, k2, k3�
3 d2�k1 1 k2 1 k3� , (2)

where the delta function constraint is a consequence of the
assumption of statistical isotropy.

Method.— In this Letter, we take the approach adopted
by Ferreira, Magueijo, and Górski in the analysis of the
COBE four-year data [3]: We construct an estimator for
the bispectrum, apply it to the MAXIMA-1 data, and
quantify its variance using Monte Carlo methods. The
MAXIMA-1 experiment and dataset is described in detail
in Ref. [1]; as in [2] we use a map with square pixels of
80 each.

Given a map, we fast Fourier transform it and construct
the following bispectrum estimator:

B̂�1�2�3 �
1

N�1,�2,�3;D�

X
ki[S��i ,D��

Re�a�k1�a�k2�a�k3�� ,

(3)

with

k1 1 k2 1 k3 � 0 , (4)

where S��i ,D�� is a ring in Fourier space centered at k � 0
and with radial coordinates k [ ��i 2 D��2, �i 1 D��2�,
N�1,�2,�3;D�

are the number of modes which satisfy this con-
dition, and Re�A	 is the real part of A. For a given choice
of �i (with i � 1, 2, 3), we obtain an estimate of the bi-
spectrum averaged in a bin of width D�. We correct for
the finite resolution of the experiment and the pixelization
of the map by replacing the quantity a�k� (that is estimated
directly from the map) by a�k���B�k�W�k��, where B�k�
and W�k� are the beam and pixel window functions, re-
spectively (see [11] for a detailed Fourier space description
of the beam).

There are a number of approximations in our analysis.
We do not discuss any systematic effects that may have
come into play when generating the map; a detailed de-
scription of these effects is presented in [12]. The flat sky
approximation in the estimate of the power spectrum is
valid to within 1% for the MAXIMA-1 100-square-degrees
map. The fact that we are not considering a full sky map
leads to two further complications [13]. First, there will
be a finite correlation length in Fourier space between ad-
jacent modes. In maximum-likelihood methods, this is
automatically taken into account when constructing the
correlation matrix, but in our case we must take care in
assessing how our results depend on the width of the bins,
D�, in which we estimate our bispectrum. Second, the
map we are working with does not have periodic bound-
ary conditions, an essential underlying assumption when
performing a fast (or discrete) Fourier transform. We cor-
rect for this by multiplying the map by a Welch window
function which suppresses the mismatch at the border of
the map, thus reducing the leakage between neighboring
241302-2
scales in Fourier space. Naturally, we take this into ac-
count when estimating the bispectrum. Finally, the map to
which we apply our estimator will contain anisotropic in-
strumental noise, and one may be concerned that this may
bias the estimate. However, given that the signal and noise
are uncorrelated, and the noise is Gaussian [12], it will not
affect our estimate of the bispectrum, merely its variance.

Our goal in this Letter is twofold. First, to obtain an
estimate of the bispectrum from the data without making
any assumptions about the statistics of the signal, and, sec-
ond, to assess how compatible our estimate of the bispec-
trum is with the assumption that the MAXIMA-1 data set
is Gaussian. To obtain a model independent estimate of
the bispectrum and its variance, we use bootstrap meth-
ods [14]. Bootstrap methods are widely used in situations
where one wishes to extract the statistical properties of a
given estimator without making any assumptions about the
distribution from which a sample has been drawn.

One can redefine the estimator in Eq. (3) in the follow-
ing way: Divide the ring in Fourier space into six equally
sized angular segments of width 2p�6; subdivide each of
these segments into M � 2p��6D� angular slices. Within
each of these slices apply the estimator in Eq. (3), replac-
ing S��,D�� by the corresponding set of points within the
slice. Note that this is applicable only to the diagonal
components of the bispectrum B��� (the inclusion of non-
diagonal components will introduce correlations between
samples which will bias bootstrap estimates). In this way,
we find M approximately independent estimates of the
B���; note that D� . 2p�(field size) for this to be pos-
sible. If we find the average of these M estimates, we re-
cover the value one obtains by applying (3). The fact that
we have M (almost) independent estimates puts us in the
condition where one can apply bootstrap methods to esti-
mate the distribution and consequently the variance. We
should note, however, that there are two limitations to this
approximation. On the one hand, the sky signal is not uni-
formly distributed in Fourier space; i.e., there may be weak
correlations between different Fourier modes. On the other
hand, the noise is anisotropic and correlated, which means
that the noise covariance matrix is not diagonal in Fourier
space. Both of these effects may lead to correlations be-
tween the M approximately independent samples, but for
large enough D� they should be negligible. Given that the
bootstrap method is the only nonparametric (or model in-
dependent) method which one can apply in this situation,
we choose to neglect these correlations [14].

Our approach to test for the Gaussianity is to generate
105 Monte Carlo realizations of the MAXIMA-1 data set,
assuming a Gaussian signal with the power spectrum of the
best fit model to the band powers estimated in [1]. Note
that each of these mock data sets will have a realization
of the noise which obeys the full anisotropic, nondiagonal
correlation matrix; moreover, the effect of pixelization and
finite beam are taken into account. We then compare our
estimate of the real data with the Gaussian ensemble and
quantify a goodness of fit.
241302-2



VOLUME 88, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 17 JUNE 2002
Results.—We present the results we have obtained an-
alyzing a square patch in the center of the MAXIMA-1
map, with 502 pixels. Given the dimensions of the map,
we consider D� � 75; these correspond to the bin widths
of the estimates of the C� in [1] and lead to correlations of
the order of a few percent between adjacent bins. In Fig. 1
we present the diagonal elements (�1 � �2 � �3 � �) of
the estimate of the bispectrum (see also Table I). Note that
all values of the bispectrum are of order �0.001 0.01�C3�2

�
,

and the fact that B���j��224 is so large is mostly due to the
fact that this corresponds to the peak value of C�.

The boostrap errors are evaluated from resamplings with
replacement of the approximately independent samples
within each ring; the errors correspond to the 68% confi-
dence regions with these simulated distributions. We find
that the average bootstrap errors sbs over an ensemble of
Gaussian maps to be between 4% and 8% lower than the
true underlying variance. This bias is due to the correla-
tions between adjacent samples within each ring. More-
over, the number of approximately independent samples
ranges from M � 2 at � � 148 to M � 10 at � � 748,
and one should therefore bear in mind that, for low �, the
variance in the estimate of the bootstrap errors is large.

We have performed a number of tests to evaluate how
robust the result is on the parameters of our estimator. We
have taken a larger patch of the MAXIMA-1 map and con-
sidered maps of 502 pixels with different locations within
the MAXIMA-1 map. The estimated bispectra vary by
a few percent. Alternatively, we have considered different
bin widths (with D� � 60 and D� � 90) and found that es-
timates of the bispectrum vary smoothly and are consistent
within different binnings. The use of the Welch window
function turns out to be essential for small �; this is to be
expected as it should be the values of B��� for low � which
are most affected by finite size effects. A different choice
of window function (such as the Bartlett window function)
changes the estimate of B���j��148 and B���j��224 by an
order of 15% but leaves the remaining values of B��� un-

FIG. 1. Estimate of the bispectrum of the MAXIMA-1 CMB
map. The error bars are evaluated using a Monte Carlo bootstrap
method. Note that, given the small number of samples for the
low � components, there is a large uncertainty in the estimation
of the error bars.
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affected. One final test we have undertaken was to rotate
the ring considered in Fourier space, this way displacing
the M angular slices; we have found that the results vary
by at most 10% in the lowest � bin.

In Fig. 2, we plot the diagonal estimate of the
MAXIMA-1 bispectrum compared to the 68% and 95%
contour values if the sky was indeed Gaussian. We have
checked that our statistic is unbiased even in the presence
of anisotropic Gaussian noise and, as can be seen, the
MAXIMA-1 B� seem to be consistent with the Gaussian
assumption. The obvious way to quantify this is to use a
goodness of fit. For the Monte Carlo realizations of the
Gaussian sky signal, we find that most of the histograms
of the B�1�2�3

are well approximated by Gaussians, and we
therefore define the standard x2 �

P
�1�2�3�0

1�0
2�0

3
�Bobs

�1�2�3
2

Bth
�1�2�3

�C21
�1�2�3�0

1�0
2�0

3
�Bobs

�0
1�0

2�0
3

2 Bth
�0

1�0
2�0

3
�, where Bth

�1�2�3
� 0

and C is the covariance matrix of the estimators evaluated
from the Monte Carlo realizations. In all, we have 115
values and we find x2 � 130. From 104 realizations, we
construct the expected distribution of this x2: We find
that 70% of the distribution is contained to the left of the
measured value. Even if we remove the outlier from the
set of bins centered at � � 224 we still find that 52% of
the distribution lies to the left of the measured x2.

Cosmological implications.—One can roughly divide
the two possible sources of nonGaussianity in the CMB
into primordial and late time. The latter have been ex-
tensively studied in [5] and typically give rise to nonzero
bispectra on very small angular scales (� . 1000). We
do not expect to find any evidence for such signatures in
the MAXIMA-1 map. Moreover, the observed bispectrum
limits the point source contribution to the MAXIMA power
spectrum as it shows no significant rise at high �. Primor-
dial effects may give rise to non-Gaussianity on degree
scales, and we shall focus on a few possibilities now. In-
flation predicts almost Gaussian fluctuations to a very good
approximation; there is, however, the possibility that sec-
ond order corrections in the evolution of the inflaton field

TABLE I. Measured bispectrum values and corresponding er-
rors. The first column has the bandwidths, the second column
the estimate of the bispectrum, the third column has an estimate
of its variance using bootstrap methods, the fourth column has
an estimate of its variance assuming the signal is Gaussian, and
the fifth column has its variance just due to noise. Columns 2-5
are in units of �mK�3.

��min, �max� �3B� �3sbs �3sG �3sN

�111, 185� 25455 4477 16 329 38
�186, 260� 79 622 55 440 41 363 145
�261, 335� 213 167 15 798 17 590 183
�336, 410� 21373 7687 8504 366
�411, 485� 25208 1977 7593 1071
�486, 560� 3298 8939 8801 1815
�561, 635� 3199 6213 9387 2892
�636, 710� 16 952 12 518 13 997 5939
�711, 785� 22802 18 725 26 058 14 197
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FIG. 2. Comparison with a Gaussian sky. The solid (dashed)
lines delimit the 68% (95%) confidence region determined from
a Monte Carlo simulation of a Gaussian sky; the MAXIMA-1
noise covariance matrix was used to simulate realistic, aniso-
tropic noise, and the beam and pixel window functions were
included.

may lead to mild non-Gaussianity. Komatsu and Spergel
[7] have parametrized this nonlinearity in terms of a “non-
linear coupling constant,” fNL, which can be related to
dynamical parameters in a variety of models of inflation.
For example, fNL 
 �3e 2 2h�, where e and h are the
slow roll parameters of single field inflation; one expects
from slow roll models that at most fNL 
 O �1�. An order
of magnitude estimate gives

B�1�2�3

 b�1�2

1 b�2�3
1 b�3�1

b�i�j � 2
1.1 3 102

TCMB
fNL

µ
DT�i

�i

∂2µ
DT�j

�j

∂2

,

and DT2
� � ��� 1 1�C���2p�. Using the Monte Carlo

realizations described previously, it is possible to estimate
the smallest amplitude, jfNLj, distinguishable from the
Gaussian hypothesis; we find that jfNLj , 944 is indis-
tinguishable from a Gaussian signal at the 95% confidence
level. Note that the use of lower multipoles (as measured
by COBE) should narrow this interval. A fit to the mea-
sured values using the Gaussian covariance matrix gives
jfNLj 
 900 (x2 � 122).

More exotic possibilities can be considered, such as,
for example, global topological defects. A semianalytic
framework exists which allows one to calculate the statis-
tical effects using the O�N � nonlinear s model. Different
values of N will correspond to different types of localized
objects, with, for example, N � 2 corresponding to global
strings, N � 3 monopoles, and N � 4 corresponding to
textures (taking N to infinity we recover Gaussianity).
Verde et al. [8] (see also [6]) have estimated the bispec-
trum and found that

B�1�2�3 

2.0 3 105

TCMB
a

µ
DT�1

�1

DT�2

�2

DT�3

�3

∂4�3

,

where a � N21�2 (we should point out that this expres-
sion was derived for large angles). In what follows, we
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shall extrapolate this expression to subdegree scales. The
current sensitivity is such that models with a 
 ,2.4 are
indistinguishable from Gaussian theories; this range of a
corresponds to any value of N . We find the best fit a to
be a � 2.2. Current estimates of the bispectrum do not
therefore constrain global topological defects.

The bispectrum analysis of the MAXIMA data indicates
that the data is consistent with Gaussianity. This reinforces
the conclusions obtained in [2] and validates the assump-
tions that go into the data-analysis pipeline, namely, the
assumption of Gaussianity of the sky signal which goes
into both maximum-likelihood and Monte Carlo estimates
of the power spectra.
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