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Near an event horizon, the action of general relativity acquires a new asymptotic conformal symmetry.
For two-dimensional dilaton gravity, this symmetry results in a chiral Virasoro algebra, and Cardy’s
formula for the density of states reproduces the Bekenstein-Hawking entropy. This lends support to the
notion that black hole entropy is controlled universally by conformal symmetry near the horizon.
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Introduction.—Since the seminal work of Bekenstein
[1] and Hawking [2], we have understood that black holes
are thermodynamic objects, with characteristic tempera-
tures and entropies. The Bekenstein-Hawking entropy
depends on both Planck’s constant h̄ and Newton’s gravi-
tational constant G, and offers one of the few known “win-
dows” into quantum gravity. In particular, the microscopic
statistical mechanics of black hole thermodynamics may
tell us a good deal about the fundamental quantum degrees
of freedom of general relativity.

Until quite recently, standard derivations of black hole
entropy involved only macroscopic thermodynamics, and
a statistical mechanical description was more a hope than
a reality. Today, in contrast, we face the opposite problem:
we have many candidate descriptions of black hole statis-
tical mechanics, all of which yield the same entropy de-
spite counting very different states. In particular, there are
two string theoretical descriptions, one that counts D-brane
states [3] and another involving a dual conformal field the-
ory [4], an approach in loop quantum gravity that counts
spin network states [5], and a slightly more obscure method
[6] based on Sakharov’s old idea of induced gravity [7].
The problem of “universality” is to explain why these
approaches agree, and why they agree with the original
semiclassical computations [2,8] that know nothing of the
details of quantum gravity.

One possible answer is that black hole thermodynamics
may be controlled by a symmetry inherited from the clas-
sical theory. This idea has its roots in an observation [9,10]
that black hole entropy in three spacetime dimensions can
be obtained from Cardy’s formula [11,12] for the density
of states of a two-dimensional conformal field theory at the
“boundary” of spacetime. A number of authors have tried
to extend such arguments to black holes in arbitrary dimen-
sions [13–24], but while these calculations seem to have
the right “flavor,” none is yet fully satisfactory [25–29]. In
particular, all proposals so far require awkward boundary
conditions at the horizon, and most fail in two spacetime
dimensions, where there does not seem to be enough room
at the horizon for the required degrees of freedom.

In this paper, I point out three new ingredients that lead
to an improved description of the near-horizon symmetries
of a black hole, and show how they may overcome these
difficulties.
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1. Conformal symmetry: In the presence of a black
hole with a momentarily stationary region near its horizon,
the Einstein-Hilbert action of general relativity acquires a
new conformal symmetry. Let D be a segment of such
a horizon (see Fig. 1), with a “momentarily stationary”
neighborhood N admitting a Killing vector xa for which
D is a Killing horizon. If f is a smooth function that
vanishes outside N , then under the transformation

gab ! =c� fxc�gab (1)

the action in n dimensions transforms, up to possible
boundary terms, as

dI �
1

16pG

Z
N

=c� fxc�gabGabe

�
1

16pG
n 2 2

2

Z
N

fxc=cRe � 0 , (2)

where e is the volume form and the last equality follows
from the fact that xa is a Killing vector.

For (1) to be a genuine symmetry, it must preserve the
relevant space of fields; that is, the new metric must also
admit a Killing vector in N . This will be the case if

�xa=a�2f � 0 . (3)

Below, we shall generalize this argument to the case of an
asymptotic symmetry, for which �xa=a�2f goes to zero
at D.

2. Horizon symplectic form: In the presence of a
horizon, the canonical symplectic form of general relativ-
ity picks up a new contribution from the horizon. This
is most easily seen in the covariant canonical formalism
[30], in which the symplectic form V for a collection

FIG. 1. Black hole spacetime: neighborhood N of horizon D,
partial Cauchy surfaces C1 and C2, reference cross section S.
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of fields f is given by an integral V�f; d1f, d2f� �R
C v�f;d1f,d2f� of a closed form v over a (partial)

Cauchy surface C. Consider the two surfaces C1 and C2
of Fig. 1. Since v is closed,

VC1 �f;d1f,d2f� � VC2�f;d1f,d2f�

1
Z D>C2

D>C1

v�f; d1f,d2f� , (4)

where the integral on the right-hand side is over the portion
of the horizon joining C1 and C2. For the “isolated hori-
zon” boundary conditions of Ref. [31], the restriction of v

to D is exact, and the horizon integral can be absorbed into
V. In general, though, there is no reason to expect such
simplicity. Instead, to define a symplectic structure that is
independent of the Cauchy surface C, one must choose a
“reference” cross section S of the horizon and define

V̂C�f;d1f,d2f� �
Z

C
v�f;d1f,d2f�

1
Z D>C

S
v�f; d1f,d2f� , (5)

where the second integral is over the portion of the horizon
connecting S and C.

3. Asymptotic symmetry: The horizon of a generic
black hole need not have a stationary neighborhood N .
The boundary conditions of Ref. [31], for example, require
a Killing vector only on the horizon. What we need is a
notion of an asymptotic symmetry, in which the spacetime
is “almost” stationary as one approaches the horizon.

Traditionally, an “asymptotic symmetry” in general rela-
tivity has meant an exact symmetry that preserves some
extra asymptotic structure. Here we have a different situ-
ation, a symmetry that may be exact only at the horizon,
but that can be made arbitrarily good by shrinking the
neighborhood N . This is best viewed as a weakly broken
symmetry. We can find an approximate Killing vector xa

near the horizon (e.g., in the manner of [32]) and a metric ḡ
for which xa is an exact Killing vector, and write g � ḡ 1

h, where h � 0 at the horizon. The Lagrangian L�ḡ 1 h�
is then invariant up to terms of order h, and the would-be
Noether current for the transformation (1) is conserved up
to terms of order h. While more work is needed to fully
understand this sort of symmetry, it is evident that if h is
smooth, an asymptotic symmetry near the horizon should
become an exact symmetry for fields on the horizon itself.

The two-dimensional black hole.—We can now ask
whether the new symmetry (1) places any restrictions on
black hole thermodynamics. In general, one ought not to
expect a symmetry to determine anything as “microscopic”
as a density of states. There is one important exception,
though: for a one- or two-dimensional conformal symme-
try described by a Virasoro algebra with central charge c,
the Cardy formula [11,12,33,34] tells us that the number
of states having eigenvalue D of the “energy” L0 goes
241301-2
asymptotically as

r�D� � exp

(
2p

s
ceffD

6

)
, (6)

where ceff � c 2 24D0, with D0 the lowest eigenvalue of
L0. This behavior is universal, holding independent of any
details of what states are being counted.

The question is thus whether the symmetry (1) can be
described by such an algebra. It is useful to focus on a par-
ticular example, two-dimensional dilaton gravity. This is
not as restrictive as it may seem, since general relativity in
any dimension can be dimensionally reduced via a Kaluza-
Klein mechanism to two-dimensional gravity coupled to
“matter” fields, and I shall argue below that the extra fields
do not affect the conclusions. The action for dilaton grav-
ity is [35]

I �
Z

L �
1

2G

Z µ
fR 1

1
L2

V �f�
∂
e , (7)

where L is a coupling constant and V is an arbitrary func-
tion of the dilaton field f. Strictly speaking, one cannot
define the expansion of a null congruence in two dimen-
sions, but the analog here is

q � ��a=af��f , (8)

where �a is the null normal. All known exact black hole
solutions, including dimensionally reduced descriptions of
higher-dimensional black holes, have null horizons with
vanishing q .

As in previous work [13,14], we will start with a
“stretched horizon,” here a null surface D̃ with null
normal �a for which q is small but nonzero. Near a true
horizon, we can take q to be a measure of how far we have
“stretched” away; in the end, we will take the limit q ! 0.
The vector �a determines a unique “orthogonal” null vec-
tor na, such that �ana � 21. We extend na from D̃
by requiring that na=anb � 0, from which it follows that

=a�b � 2kna�b, =anb � knanb , (9)

where k is the “surface gravity.” Note, though, that unlike
a timelike or spacelike unit vector, a null normal does not
have a fixed normalization: by rescaling �a ! f�a, one
can change k almost arbitrarily on a fixed null surface
D̃ [31],

k ! �a=af 1 kf, na=af � 0 . (10)

Observe from (9) that

=a�b 1 =b�a � kgab , (11)

so �a is a conformal Killing vector. We shall see later
that the natural scaling of �a leads to a surface gravity k

proportional to q , so �a is an approximate Killing vector
near the horizon.

The application of the transformation (1) to two dimen-
sions is a bit tricky, both because of the new field f and
because the field equations of dilaton gravity differ from
those of ordinary general relativity. In general, we should
241301-2
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expect f as well as gab to transform, and it is easy to check
that under a transformation

dgab � =c� f�c�gab � ��c=cf 1 kf�gab ,

df � ��c=ch 1 kh� ,
(12)

the Lagrangian (7) satisfies dL � q . We thus have an
asymptotic symmetry in the sense described above. For
now, the relationship of f and h will remain unspecified;
we shall see later that the choice that makes the transfor-
mation (12) canonical implies that dL � q 2.

Equation (12) is not enough to determine the separate
variations of �a and na. This is to be expected, since the
normalization of �a is not fixed; the only restriction, from
(9), is that na=a�nb d�b� � 0. We are thus free to choose
d�a � 0, which then implies that

dk � �b=b��c=cf 1 kf� ,

ds � �a=a��b=bh 1 kh� ,
(13)

where s � �a=af � qf. It follows that

�d1,d2�gab � ��c=c� f1, f2� 1 k� f1, f2��gab

with � f1, f2� � ��a=af1� f2 2 ��a=af2� f1 ,
(14)

giving the standard conformal algebra.
To express the transformations (12) in Hamiltonian

form, we need the symplectic form V̂ of (5). This can be
computed by Wald’s methods [30,35]. For variations that
have their support only in a small neighborhood N of D̃,
the main contribution will come from the integral along
D̃. Restricting the symplectic form of Ref. [35] to D̃, one
finds that

V̂ �
1

2G

Z
D̃

��a=a�d1f��bd2nb 2 �a=a�d2f��bd1nb�ê

� 2
1

2G

Z
D̃

�d1fd2k 2 d2fd1k�ê , (15)

where ê � n is the induced volume element on D̃ and the
last equality follows from (13).

Hamiltonian and Virasoro algebra.—The next question
is whether the transformation (12) is canonical, that is,
whether it is generated by a “Hamiltonian” L. Such a
Hamiltonian must satisfy [30]

dL� f, h� � V̂�d,df,h�

� 2
1

2G

Z
D̃

�df�b=b��c=cf 1 kf�

2 dk��c=ch 1 kh��ê , (16)

where again s � �a=af. The variation d is an exterior
derivative on the space of fields, and the integrability con-
dition for (16) is that d2L�f, h� � 0. If we assume that
the parameters f and h are field independent, this condition
requires that ds be proportional to dk. In particular, this
proportionality must hold for variations of the form (12),
and this, together with the requirement that df � dh � 0,
241301-3
implies that

k

s
� const on D̃, sf � kh . (17)

Despite appearances, (17) is not a real restriction on the
geometry, since k�s can always be rescaled to a constant
on D̃ using (10). As noted earlier, this relation makes the
transformation (12) an even better approximate symmetry.
Indeed, the variation of the “kinetic term” fR in the action
now goes as q 2 near D, and the variation of the “potential
term” can also be arranged to be of this order by a suitable
choice of k�s on D̃.

With the relation (17) between h and f, (16) can easily
be integrated, yielding

L� f� �
1

2G

Z
D̃

s�2�a=af 1 kf�ê

� 2
1

2G

Z
D̃

�2�a=as 2 ks�fê . (18)

We must next choose a basis for the functions f on D̃.
Since the normalization of �a is not fixed, the correspond-
ing light cone coordinate has no intrinsic physical meaning.
There is, however, a natural coordinate on D̃, the dilaton
f itself, which by the two-dimensional version of the Ray-
chaudhuri equation should be monotonic on D̃. Let

z � e2pif�f1 , (19)

where f1 is the value of f on the horizon, so z ! 1
at D [36]. We can then choose a basis of functions to
be proportional to zn, with the proportionality constants
determined by (14):

fn �
f1

2ps
zn, � fm, fn� � i�m 2 n�fm1n . (20)

Note that the consistency condition (3) is satisfied asymp-
totically: ��a=a�2fn � q near D.

In terms of these modes, the Hamiltonian (18) becomes,
on shell,

L� fn� � 2
1

2G

k

s

f1
2

2p
dn0 . (21)

The Poisson brackets �L� fm�, L� fn �� can be computed di-
rectly from Eq. (16):

�L� fm�, L� fn�� � dfm L� fn� � 2
2pi
G

s
k

n3dm1n,0 ,

(22)

which may be recognized as the expression for a central
term in the Virasoro algebra with central charge

c � 2
24p

G

s

k
. (23)

We can now insert (21) and (23) into the Cardy formula
(6). With the assumption that D0 	 0— i.e., from (21),
that quantum black hole states extend all the way down to
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f1 	 0— we have ceff 	 c, yielding a density of states

logr�L0� �
2pf1

G
. (24)

This is precisely the Bekenstein-Hawking entropy for
the two-dimensional dilaton black hole [35]. The central
charge c used here is the “classical” central charge, but
by the correspondence principle, it should give the leading
���O�1�h̄���� contribution to any quantum theory that has the
correct classical limit. Additional quantum contributions
may occur, but they will give corrections of order 1, unim-
portant for large black holes. It is worth emphasizing once
again that the Cardy formula tells us nothing about what
states are being counted. The relevant states need not even
be “gravitational”: the gravitational action determines the
conformal symmetry, but the mere existence of this sym-
metry is enough to fix the asymptotic density of states.

In contrast to previous work on Virasoro algebras at the
horizon, this derivation has the nice feature that the central
charge (23) does not depend on the particular black hole
being considered. The algebra may therefore be viewed
as a universal one, with different black holes represented
by different values of L0. An extension of this analysis
to higher dimensions would clearly be of interest. As
noted above, though, higher-dimensional general relativity
may be dimensionally reduced to two-dimensional dilaton
gravity coupled to extra matter fields (see, for example,
[37]). It is fairly easy to see that the added terms cannot
contribute to the classical central charge (23), though they
might give quantum corrections.

We should probably also worry further about making the
notion of “asymptotic symmetry” used here more rigorous.
It may be useful to exploit a generalization of the symmetry
(1) that exists in the presence of a conformal Killing vector
ha, =ahb 1 =bha � kgab . It is not hard to check that
the transformation

gab !

µ
hc=cf 1

n 2 2
2

kf

∂
gab (25)

leaves the Einstein-Hilbert action invariant provided f is
chosen to satisfy

R
gab=ak=bfe � 0. If the original met-

ric gab admits a conformal Killing vector, the transformed
metric does as well. Maintaining the condition on f is
trickier, but at least one solution exists: if both k and f
are functions of a single null coordinate y, this restriction
holds automatically. Work on understanding this extended
symmetry is in progress.
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